
• ! 1 "2166 :

, a g l$1g4G 2q Uolaas
,2r,2 6 .) . 0-cDOL s 693

$oC1' , o c
tS852 INS 510;- S 0 9A4-Iq G3 08

o gB"11T • Co.)*

Reproduced by

NATIONAL TECHNICAL . , e- ...
INFORMATION SERVICE ~It SGCT TO CVNG

US Department of Commerce rTu
Springfield, VA. 22151

MCDONNELL DOUGLAS ASTROMAUTICS COMPANIV

MCDONNELL DOUGLAS

cORPORATION

Y I

COMPILER WRITING SYSTEM
DETAIL DESIGN SPECIFICATION

DUGLAS _ VOLUME II

Component Specification

APRIL 1974 MDC G5359

PREPARED BY:

W. J. ARTHUR

MCDONNELL DOUGLAS ASTRONAUTICS COMPANY

ADVANCE INFORMATION SYSTEMS

PREPARED UNDER THE DIRECTION OF:

MR. B. C. HODGES
MARSHALL SPACE FLIGHT CENTER
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
UNDER CONTRACT NAS8-27202

ICDONNELL DOUGLAS ASTRONAUTICS COIMPANY-WEST

5301 Bolsa Avenue, Huntington Beach, CA 92647

COMPILER WRITING SYSTEM

DETAIL DESIGN SPECIFICATION

VOLUME II - COMPONENT SPECIFICATION

MDAC CONTRACT NUMBER NAS8-27202

"TECHNIQUES IN THE GENERATION

OF SUPPORT SOFTWARE"

30 APRIL 1974

Preceding page blank

PREFACE

rhis report is Volume II of the design specification for the Compiler Writing

System. It will introduce the reader to the organization and structure of the

system components and their relationship to the overall compilation process.

lolume I should be referred to for a discussion of the compiler definition and

support languages.

rhis report has been prepared in compliance with the requirements of contract

AS8-27202, covering work done between 1 June 1973 and 30 April 1974. If

idditional information is required, please contact any of the following McDonnell

)ouglas or NASA representatives:

o Mr. G. M. Jones, Contract Negotiator/Administrator

Huntington Beach, California

Telephone: (714) 896-2795

o Mr. B. C. Hodges, Project COR, S&E-COMP-C

Marshall Space Flight Center, Alabama

Telephone: (205) 453-1385

Preceding page blank
VA

TABLE OF CONTENTS

INTRODUCTION Page

SECTION 1. META-COMPILER 1-1

1.1 Program Logic Modules 1-2

1.2 Internal Table Structures 1-44

1.2.1 Hash Tables 1-44

1.2.2 Stacks 1-49

1.2.3 Arrays 1-63

1.3 Meta-Translator Bootstrap 1-64

SECTION 2. SOURCE PROCESSOR 2-1

2.1 Program Logic Modules 2-2

2.2 Semantic Support Functions 2-22

2.2.1 Data Declarative Functions 2-23

2.2.2 Expression Manipulation 2-29

2.2.3 Utility Functions 2-35

2.2.4 Program Definition 2-47

2.2.5 Program Transfer Control 2-54

2.2.6 Condition Transfer of Control 2-61

2.2.7 Loop Control 2-72

2.3 Internal Data Structures 2-80

SECTION 3. FUNCTION PROCESSOR 3-1

3.1 Program Logic Modules 3-2

3.2 Internal Data Structures 3-61

Preceding page blank_
vii

Page

SECTION 4. OPERATION PROCESSOR PASS II 4-1

4.1 Program Logic Modules 4-2

4.2 Internal Data Structures 4-6

SECTION 5. EXTERNAL DATA STRUCTURES 5-1

5.1 Function Language File Structure 5-2

5.2 Intermediate Language File Structure 5-3

5.3 Target Language File Structure 5-4

5.4 Compiler Library File Structure 5-5

APPENDIX A: SYMBOL TABLE LAYOUT A-1

viii

FIGURES

FIGURE TITLE PAGE

1 COMPILER WRITING SYSTEM BLOCK DIAGRAM

1-1 META-COMPILER BLOCK DIAGRAM 1-4

2 SOURCE PROCESSOR BLOCK DIAGRAM 2-3

2-1 EXPRESSION MANIPULATION LOGIC FLOW 2-30

2-2 OPTIMIZATION SUPPORT LOGIC FLOW

3 FUNCTION PROCESSOR BLOCK DIAGRAM 3-3

j-1 LOCAL OPTIMIZER LOGIC FLOW 3-18

3-2 BINARY OPERATOR LOGIC FLOW 3-22

3-3 REDUNDANCY CHECKER LOGIC FLOW 3-28

3-4 REGION GLOBAL OPTIMIZER LOGIC FLOW 3-35

3-5 STRENGTH REDUCER LOGIC FLOW .3-38

3-6 TEST REPLACEMENT LOGIC FLOW 3-40

4 OPERATION PROCESSOR PASS II BLOCK DIAGRAM 4-3

ix

INTRODUCTION

Volume II of the Compiler Writing System design specification is contained herein.

It consists of five sections and an appendix. Each section describes a system

component, either a program logic module or an external data file.

Section 1 describes the logic modules and data structures composing the Meta-

Translator module. This module is responsible for the actual generation of the

executable language compiler as a function of the input Meta-Language. Machine

definitions are also processed and are placed as encoded data on the Compiler

Library Data File.

Section 2 presents the Source Processor design. Logic modules and internal data

structures are described as well as the collection of semantic support functions

facilitating the generation of Function Language.

Section 3 defines the logic modules and internal data structures of the Function

Processor. The algorithms and effects of local and global optimization, and the

code generation methodology are presented.

Section 4 deals with defining the optionally invoked Operation Processor Pass II.

The transformation of intermediate language in Target Language object text is

described.

Preceding page blank

Section 5 describes the format of all external data files utilized by the system.

The meaning of the elements contained in each file is described in Volume I.

Figure 1 describes the flow of the Compiler Writing System in terms of a block

diagram.

xii

PROCESSC-

FUNC TI < OI'PERATION
SOURCE ,LALA I, LAAGUAG P

SOURCE PROCESSORE , L

LANGUAGE ATA DATA PTCP "R - ARGET

PROG - 1---JT1 iT_ 1(OPT.) IsI .
S CMNDS |NDS CM)DsNDS |jL -

COMPILER EXECUTION
mn numinimn imimmmmmmni. mnm umu Bun •uum1mmmmm...uu..mu..h..um.1...

COMPILER DEVELOPMENT

co ip, SOURCE T n.,H- g
DEF L COllE

META-
LANGUAGE

FIULRE 1. COMPILER ;iTI:G SYSTiM aIi

1. META-COMPILER

This section describes the major modules and submodules of the Meta-Compiler as

well as the hash tables, stacks, and arrays necessary to process the Meta-Language

input. A method for the bootstrap development of the Meta-Compiler using the

existing Meta-Translator as a base is also presented.

1-1

1.1 Program Logic Modules

The Meta-Compiler is organized as a collection of distinct modules, each

having a clearly defined logical function. Only the major modules and sub-

modules are presented in this document as further division of tasks between

subprograms composing each module is to be accomplished at implementation

time. Figure 1.1, the Meta-Compiler block diagram, illustrates the inter-

relationships between each module and the internal and external data paths.

The function and processes of each logic module is presented below.

1-2

MODULE: Main Control (MAIN)

FUNCTION: Coordinates and controls the execution of all other logic modules

of MECOM.

PROCESS:

The main control module initiates execution of MECOM and retains control at all

levels. It performs the phased execution of overlay modules, each of which

provides processing of a particular section of the Meta-Language.

The Options module is initiated to read the first card image and extract the

option parameter settings. A repetitive loop is then entered to process each

encountered Meta-Language statement. The relevant statement flags (CURSOR, etc...)

are initialized prior to recognizing each statement type. Each statement is

recognized as being part of a particular section or level of the Meta-Language,

and each distinct section has its own processing module in the form of a separate

overlay. A given overlay is repeatedly executed until all statements in the

section have been processed, after which the next overlay module is initiated.

Subsequent to processing a given statement, control returns to the Main Control

module, which then executes the Deferred Execution module for processing any

deferred procedure calls that have been stacked, primarily TEXT code generation

requests.

Upon encountering the END OF DEFINITION statement, the Wrap-Up module is executed

to complete the Meta-Language listing. Control is then returned to the supporting

operating system.

1-3

01769

META-COMPLIER BLOCK DIAGRAM

COMPILER
4 DEFiNITION OPTIONS i EFERRE

i EXECUTICON

DEFINITION

LIBRARY
UPDATE

ENCODE

LEXICAL 5
DEFINITION I N T E R N A L UNIT COMPILER TEMPORARYITERAL UNIT TEMPORARY

STR UCTUS 4 LIBRARY FILE
LANGUAGE (TABLES/STACKS) DATA FLE
DECLARATION -

WRAP-UPI a , m m
RULE i
DEFINITION i

FRONT-END
DECLARATION 8

TEXT
SOURCE OUTPUT
INPUT PUNCH PRINT

5 MODULE[.
L " a GENERATED

COMPILER

UNIT 1 COMPILER LISTNG I

META- BODY UNIT 6
LANGUAGE
SOURCE UNIT 3 lUNIT 2I

0l F FIGURF .1

The processing modules include: Compiler Definition, Target Definition, PROC

encode, Lexical Definition, Language Declaration, Rule Definition.

IMPLEMENTATION:

Generated by Meta-Translator bootstrap (1.3), phase 2.

1-5

MODULE: Options Parsing

FUNCTION: Parses the MECOM options card and sets the corresponding option flags.

PROCESS:

A single card image of the format specified in section 1.4, Volume I, is parsed

with the following interpretation applied to each option:

NO -- No punched output is produced for the generated compiler;

NS -- No listing of the generated compiler statements is produced;

3 -- the corresponding debug options are activated (see Volume I, DEBUG
4 declaration).

5
6

All other 'compiler' options, such as level of optimization, etc..., are ignored

during MECOM execution since they have no relevance.

IMPLEMENTATION:

Generated by Meta-Translator bootstrap (1.3), phase 6.

1-6

MODULE: Compiler Definition

FUNCTION: Processes the DEFINE statement initiating a compiler definition,

and the symbolic EQUATE.

PROCESS:

The compiler name is parsed and placed as the first entry in the NAMLST table.

The host word size, card image size, and the table size specifiers (if present)

are then parsed and the values are saved. These values will be preset into

the correct position of the generated BLOCK DATA initializer.

The EQUATE statement handling involves simply placing each equate name in table

TEQU and its equivalent integer value in the parallel attribute. All future

references to the name will be replaced by their integer equivalent.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-7

MODULE: Lexical Definition

FUNCTION: Processes the lexical preprocessor definition section of a

compiler definition.

PROCESS:

This module cycles continuously until all statements defining the lexical pre-

processing of the compiler input language have been processed.

The TERMINAL statement handling involves:

(1) Placing each detected terminal name in table TNAME and its

corresponding LTERMD start position into the parallel attribute

vector;

(2) Encoding each terminal operand into stack LTERMD so as to inter-

pretively drive the compiler Terminal Detection module at compile

time. Each operand results in a number of character intervals

within LTERMD;

(3) The entries within LTERMD are sorted by interval at the end of

processing a terminal definition. Each interval is disjoint.

A literal string terminal operand results in one or more intervals in stack

LTERMD, depending on whether the literal characters have consecutive internal

values or not. A terminal operand which refers to another terminal name causes

all intervals defining the referenced terminal (which must have been previously

defined) to be included.

1-8

A preceding NOT on a terminal operand causes the intervals for the operand

to be 'complemented.' For example:

DIGIT results in the interval io to i+9;

NOT DIGIT results in the intervals 1 to 1i-1

i +10 to n

where

1i -- internal representation of 'O';

n -- the total number of meta-characters.

The FIELD statement processing involves placing an entry into stack LFIELD for

each encountered field specification.

1-9

The CONTINUATION statement processing involves parsing the type of continuation,

the beginning and ending append columns (colbegin and colend) and the column

operands to selectively generate the FORTRAN function QCONTI, which supports

Source Input module in the Source Processor:

FUNCTION QCONTI (DUMMY)

QCONTI= -1

'CALL QINPUT (IMAGE (CLEN+1)) Free continuation rule
Free continuation rule

CLEN=CLEN+80

IF (LENGTH .NE. 0) RETURN

:CALL QINPUT (IMAGE)

.CLEN=80 No continuation rule

IF (LENGTH .EQ. 0) GO TO 10 Card 1 or 2 rule:

IF (CARD(column). NE .character 1. ORI [normal column operand
S EQ AND NOT column operand

X CARD(column+l-l. EQI character n)RETURN

[code for next column operand]

[10 CALL QINPUT (CARD)] Card 1 rule

CALL QMOVE(CARD,IMAGE,colbegin,CLEN+I,colend-colbegin+l)

CLEN=CLEN + colend-colbegin + 1

[10 CALL QINPUT(CARD)] Card 2 rule

IF(CLEN.LT.colmax) QCONTI=l

RETURN

END

1-10

The PRESCAN statement processing involves encoding the prescan operands into

stack NTABLE to interpretively drive the Source Input module at compile time

in the Source Processor. If any direct execution prescan operands are detected,

the following subprogram is generated prior to exiting back to the Main Driver

module:

FUNCTION QDIRE(INDEX)

I=INDEX

QDIRE=l

GO TO (800,801,...),I

800 IF(...)RETURN [Relational IF]

GO TO 50
800 7 . . [Replacement Statement]

RETURN

50 QDIRE= -1

RETURN

END

Any variable names referenced within direct execution prescan operands are

placed in table AUXNAM (variable names). This will cause their later generation

as regular FORTRAN variables by the Front-End declaration module.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-11

MODULE: Language Declaration

FUNCTION: Processes the language declaration section of a compiler definition.

PROCESS:

This module cycles continuously until all language declaration statements have

been processed.

Processing the STORAGE statement merely involves saving the parsed storage

direction flag and bias values.

The MODES and OPERATORS statements causes the specified computational modes or

allowed operators to be flagged as legal within arrays LMODES and LOPERS. Any

operator hierarchy, commutivity, and associativity operand values are saved in

array LOPERS.

The ILLEGAL MODES statement processing causes triplet entries to be made into

stack IMODES.

The SYMBOL ATTRIBUTES, TABLE, and STACK statements cause the following entries

to be made:

a. A table or stack name is placed in table TABLST.

b. For symbol or hash table attribute declarations, the TABLST

attribute is set to the next position in stack IATR. The attribute

information is then encoded into stack IATR. The number of lost

words per entry is computed from the highest numbered word declaration.

c. For stack declarations, only TABLST entries are made.

1-12

The IATR information will be subsequently utilized by the Rule Definition

module.when processing the PUT, IF, PACK, and UNPACK statements. The initial

eight entries of IATR and TABLST correspond to the eight segments of the

generated compiler symbol table.

The ARRAY and DATA statements cause the generation of FORTRAN DIMENSION or DATA

statements with the same information. Each array name is placed in table

AUXNAM for later inclusion in an INTEGER and COMMON declaration (see Wrap-Up

module). The generated DATA and ARRAY statements are copied onto the Punch

file (unit 3) and the temporary file (unit 5), respectively, for later inclusion

in the generated BLOCK DATA initializer (for DATA) and the front end declaration

(ARRAY).

Processing of the ERROR MESSAGE directive causes each message to be placed in

table CLITS, which contains all compressed literal strings.

The DEBUG directive parsing causes appropriate flags (0 or 1) to be saved for

each debug option.

The STATEMENT level declaration causes the level for each statement processing

mlv to be saved in stack LLEV along with the one-time flag (ONCE) and recognition

criteria (mlv or literal pointer). Since an mlv is allowed to occur at more than

one level, the various LLEV entries for a given mlv are threaded together through

the mlv attribute.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-13

MODULE: Source Input

FUNCTION: Reads each Meta-Language statement into the IMAGE processing buffer

with external to internal conversion.

PROCESS:

Each card image is read from the standard input device (unit 1) into a working

buffer using an '80A1' format. Each character is then converted to an internal

number and placed into the consecutive positions in the IMAGE buffer. The

original card image is printed on the standard print output device.

IMPLEMENTATION:

Exists in FORTRAN, and is equivalent to the Input module of the Source Processor.

1-14

MODULE: Print Output

FUNCTION: Prints a line image from the designated argument buffer with internal

to external conversion.

PROCESS:

The argument array is converted from internal character numbers to external 'Al'

format characters, which are then sent to the standard print output device

(unit 2).

IMPLEMENTATION:

Exists in FORTRAN, and is equivalent to the Print module of the Source

Processor.

1-15

MODULE: Punch Output

FUNCTION: Punches a card image from the designated argument buffer with

internal to external conversion.

PROCESS:

The argument array is converted from internal character numbers to external

'Al' format characters, which are then sent to the standard punch output device

(unit 3).

IMPLEMENTATION:

Exists in FORTRAN, and is equivalent to the Punch module of the Source Processor.

1-16

MODULE: Target Definition

FUNCTION: Processes the target declaration section of a compiler definition.

PROCESS:

This module cycles until the first PROC definition is encountered, processing

all intermediate target declarations. The parsed information is saved in cells,

arrays, and tables in a form suitable for encoding onto the Compiler Library

Data file by the Library Update module.

The START TARGET processing causes the eight character target name to be saved

in two cells. The PSET statement gives values for the code generation parameter

settings.

The processing of the REGISTERS statement:

(1) Determines the number of available target registers;

(2) Saves the bit size of each register;

(3) Saves the classification of each register;

(4) Encodes the above information in the stack NREGS and the array RTYPE.

The parsing of the CHARACTERS statement causes the array INT to be set to the

target machine internal value corresponding to each language character.

The ARITHMETIC statement is parsed and the floating point and integer parameter

settings are saved.

1-17

The OPERATION statement parsing is as follows:

(1) An operation mnemonic is placed in.table OPTAB;

(2) The next available slot in stack NOPER is placed in the OPTAB

parallel attribute;

(3) The OPTAB name pointer, the operation code, and the IFORM name

pointers are encoded sequentially into stack NOPER.

The IFORM statement processing causes the instruction format names to be saved

in table IFNAME and the next available slot in the IFORM descriptor stack to

be placed in the parallel attribute. The IFORM descriptor stack is encoded

with the appropriate information.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-18

MODULE: PROC Encode

FUNCTION: Encodes the PROC definition section of a target definition into a

table to drive interpretive PROC expansion at compile time.

PROCESS:

This module cycles continuously until all PROC definitions have been processed.

Each PROC name is placed in table TPROC and the parallel attribute is set to the

position in the IPROC stack for the expansion. Each PROC argument is parsed

and placed in table PARGS, which is cleared prior to processing each PROC

definition.

Each PROC definition is processed by a single left-to-right scan of the definition

line. The starting positions in IPROC of each active PROC string are kept in

stack QSTACK to enable a pointer thread to be maintained through the string thread

word (word 1) of each string. Thus, upon processing the end of a string, the

control word of the string (pointed to by the top of stack QSTACK) is set to the

next IPROC position unless the end of the PROC is detected, in which case it is

set to zero, and QSTACK is popped.

Each element within a string is similarly threaded through a link word, with a

pointer to the beginning of each active element saved in stack ACELM.

The various types of PROC elements are encoded into stack IPROC in the format

described in section 1.2. One or more operands are parsed and placed in the

table in the form of double-entry flags. Each operand which is a symbolic name

is checked as follows:

1-19

(1) If a trailing '.SYM' modifier is found, the name is marked as

a symbol pointer and is placed in table PVARS;

(2) If the name is found in table PARGS, it is marked as a PROC argument;

otherwise,

(3) the name is considered a variable, analogous to a 'set' symbol in

conventional assemblers, and is placed in table PVARS.

Literal string operands are identified by the position of the string in table

CLITS (the compressed literals). Numeric value operands are computed and used

directly as operands. Expression operands are treated as follows:

(1) A simple expression of the form 'variable - constant' is treated

as a single operand;

(2) Complex expressions are encoded into stack PEXP on a strict left-

to-right basis. The operand value portion of the expression operand

is set to the expression's PEXP position.

Upon detecting the END TARGET statement the PROC Encode module executes the

Library Update module to cause the complete target definition to be placed on

the Compiler Library Data file.

Prior to exiting back to the Main Driver the following stacks and tables are

released to conserve storage:

TPARGS, PVARS, OPTAB, IFNAME, TPROC, NTREGS, NOPER,

IFORM, QSTACK, ACELM, PEXP, IPROC.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-20

MODULE: Library Update

FUNCTION: Updates the Compiler Library Data file, creating a new updated file

including the current target definition entry.

PROCESS:

Logical units (files) 4 and 5 are rewound and unit 4 (the Compiler Library Data)

is copied onto unit 5 until the target definition entry just defined, identified

by the saved target ID name, is found. If found the entry is skipped on unit 4.

The target data identifying the current target definition is then copied onto

unit 5, and the remainder of unit 4 is then copied also. Both units are then

rewound and unit 5 is copied in total to unit 4.

The target' definition is written as logical binary records in the format'indicated

for the Compiler Library Data File (see Volume I). The total number of definition

words required and the relative starting positions of the IFORM information,

PROC expressions, PROC variables, and compressed strings are computed. This

information along with the target parameters defined in the declarative section

of the target definition becomes the header information. The information con-

tained in the following stacks and tables are then written sequentially following

the constant-length header information:

Stack NREGS

Stack NOPER (the iform pointers are first replaced by the stack
IFORM-relative start positions)

Stack IFORM

Table IPROC attributes (PROC transfer vector)

Stack IPROC

Stack PEXP

NPVP zero cells (space for PROC variables

Table OPTAB names (operating names)

Table CLITS literals (compressed literals)

1-21

MODULE: Rule Definition

FUNCTION: Processes Meta-Language rule definition.

PROCESS:

This module cycles continuously until all language definition rules have been

processed. Each rule causes a collection of FORTRAN statements to be generated

as part of a module of the Source Processor.

Upon encountering the END OF DEFINITION statement the Wrap-Up module is executed

to complete generation of the compiler.

The first rule encountered, the INITIALIZER, causes the following statement to

be output:

SUBROUTINE QCINIT

This is followed by the code for the initialization rule, generated as described

for any rule below.

The statement recognition code for the statement processing implied by the

STATEMENTS statement (if present) is then generated by artificially creating

the following Meta-Language input via the STRING element:

$compilername.=$QRECO,$QEXECO//QTEMP=PLEVEL,$QSKIP,

(IF QTEMP GT PLEVEL,PLEVEL=QTEMP,$QEXECO//

FATAL('STATEMENT SEQUENCE ERROR'))//FATAL('UNRECOGNIZABLE STATEMENT').

$QSKIP.=PLEVEL=PLEVEL+1,(IF PLEVEL LE n //PLEVEL=I),

$QRECo//IF PLEVEL LT QTEMP-I,$QSKIP.

$QRECo.=$LABEL,CASE PLEVEL OF ($QRECI,...,$QRECn).

1-22

$QEXECo.=CASE PLEVEL OF ($QEXECI,...,$QEXECn).

$QRECi.=SET CASE Ql=(ril,...,rik.

$QEXECi.=CASE Ql OF ($eil,$ei2,...,$eik).

compilername -- the name of the compiler;

n -- the number of declared statement levels;

rij -- the mlv name or literal recognizing the j'th

statement at level i.

eij -- the mlv executing the j'th statement at level i.

For each following mlv definition rule, the mlv name is placed in table NAMLST,

a comment card with the mlv name is ejected, and the label '5000 + mlvnumber'

is prepared for the first statement of the generated body code. Each element

of each string of the definition is then processed as described below, with the

indicated FORTRAN code generated for each element. The values of the true and

false execution path labels for an element are maintained at all times, and are

referred to below by 'true' and 'false.' The scheme for maintaining 'true'

and 'false' is as follows:

(1) The cells Ldeft (true path for a definition) and deff (false path

for a definition) are set to 9001 (true exit from an mlv) and 9002

(false exit from an mlv), respectively;

(2) As each string is processed, 'true' and 'false' are set to ideft

and ideff. A forward scan is then performed to see if an alternative

string ('//') for the current string is present, and if so 'false'

is reset to a unique label (2000+K) which is saved on stack PSTACK.

At the end of the string processing, the or ('//') causes this label

to be unstacked and the code:

2000+k CALL QORP

to be generated;

1-23

(3) When all strings of a definition are so processed, the code

'GO TO Ideft'is generated;

(4) Code is generated for each element of a string as defined below. A

reoccurrence element is considered as containing a sub-definition

within its parens; thus, adeft and ideff are saved on PSTACK and are

reset to two unique end label exits (8000+K and 8001+K) identifying

the code at the end of the reoccurrence. When the reoccurrence has

been processed the old values of xdeft and ideff are restored.

(5) The code for most elements (see below) is such that if an element is

false a branch is made, so that a true element flows into its

successor element directly. Thus, the value of 'true' is rarely used

as branch label. However, three elements (mlv reference, literal

reference, and the end of a reoccurrence) may generate a 'true' branch.

In those cases the element is checked to see if it is followed by a

comma (i.e., has a successor), and if so a unique label (7000+K) is

used in place of 'true', the code is generated, and the unique label

is set up as the label for the first statement of the next element.

1-24

Code Generation by Element

(1) MLV Stepdown Element

Code: QSAVE = knnn

GO TO 9003

6nnn IF (TRUTH) Jfalse, mlvnum,true

Itrue, mlvnum,false [NOT prefix]

True.... [Generated if this element is followed by a comma]

n -- This is the n'th stepdown in this module;

k -- The mlv number of the stepped-into mlv;

mlvnumm -- 50XX, where XX is the mlv number of the stepped into mlv if

the mlv is in this module; or

-- 95XX, where XX is the label of a call statement in this SUBROUTINE

to the module containing the called mlv.

(2) Literal Element

Code: IF (QCHAR.NE.charcode) GO TO false [If NOT prefix

true [If NOT prefix]

IF (QLITSC(litpos, 1).RO.O) GO TO false [for multi-character
literals]

True.... [Generated if this element is followed by a comma]

CURSOR=CURSOR+l [For single-character literals and no NOT prefix]
QCHAR=IMAGE(CURSOR)

charcode - internal value for the first literal character;

litpos -- literal position within QLVECT.

label -- false}

true [if NOT prefix]

RO-- NE1
EQ [if NOT prefix]

1-25

(3) Scan Element

Code: IF(QLITSC(litpos,3).LE.O) GO TO false

litpos -- literal position within QLVECT.

(4) IF Test Element

(a) IF literal

Code: IF(QCHAR.NE.charcode)GO TO false

IF(QLITSC(litpos,4).LE.O)GO TO false [multi-character literals]

charcode, litpos--see element (2).

IF terminal

code: IF(QTERM(tpos,I,1,1).LT.O)GO TO false

TPOS -- terminal position within LTERMD.

Note: The form 'NOT IF literal' = 'NOT literal',element type (2).

(b) IF iexp relop iexp

code: IF(iexp.relopc.iexp)GO TO false

relopc -- relational complement of relop, or is relop if NOT prefix.

(c) IF mlv IN hashname

Code: CALL QSTACK(tabnum, mlvnum, 2, ptr, z)

IF (ptr . LE . 0) GO TO false

IGT [NOT prefix]

(d) IF mlv EQ mlv

code: IF(QSTART(mlvl). NE QSTART(mlv2))GO TO false

1EQ
IF(QSIZE(mlvl). NE . QSTART(mlv2))GO TO false

Note: EQ - NE and NE - EQ if NOT prefix.

1-26

(e) IF iexp ON stackname

code: IF(QSTKSR(iexp,stacknum). ILTI .O)GO TO false

(GEJ [if NOT prefix]

(f) IF mlv TYPE iexp

code: CALL QSTACK9iexp,mlvnum,2,SYMP,SYML)

IF(SYMP. LE.O) GO TO false

IGT [if NOT prefix]

mlvnum--the mlv number.

(g) IF NEW SYMBOL

code: IF(QSTKCK. fEQ .O)GO TO false

NEI [if NOT prefix]

(5) Reoccurrence Element

Code: CALL QREOCB (min,max)

8XXX rCode for the

body of the

[reoccurrenceJ

8YYY QLNAP= -1

8nnn IF(QREOCE(Q9999))false,8XXX,true

min -- minimum repeat value

max -- maximum repeat value

8yyy -- true exit point for a true iteration of the reoccurrence

8nnn -- false exit point for a false iteration of the n'th

reoccurrence.

Note: Y=X+l, n=X+2.

1-27

(6) Replacement Element

Code: dvar = iexp [i.e., direct copy]

(7) CASE iexp OF (element [,element])
n

Code: Q9999=iexp [if iexp is not a simple variable]

GO TO (3ZIjdj,3Z2 2 ..) Q999
liexpi

3 19i1 [code for element 1]

GO TO true

312 2Z 2 [code for element 2]

GO TO true

(8) Procedure Reference

[code for saving each argument value in QPARGS, whenever necessary]

CALL QARG1O (chain,priority,argptr)1 [deferred call]

CALL QARG10O (0, 0, argptr)J [immediate call]

chain -- deferred call chain pointer

priority - deferred call priority

argptr -- QPARGS position pointer for the arguments

The following arguments require direct code replacement into the value

cell[s] following the argument type cell in QPARGS. All arguments whose

value can be determined at meta-compile time by MECOM are placed in QPARGS

via the block data mechanism:

1-28

(a) iexp [not a constant]

QPARGS(argpos)=iexp

(b) hashname(iexp)

QPARGS(argpos+l)=iexp

(c) stackname(iexp)

QPARGS(argpos+l)=iexp

(d) ELEMENTS [iexp THRU iexp] OF stackname

QPARGS(argpos+l)=iexpl [if not constant]

QPARGS(argpos+2)=iexp2 [if not constant]

(9) Put Element

Code: CALL QSTACK(tabnum,symbol,l, SYMPSYML
ptr,L

tabnum -- hashname table number or symbol type;

symbol -- >0 = mlv number

<0 = negative of compressed string pointer for literal;

ptr,L -- running pointer and length designators for the hash table.

If 'PUT literal[,literal]...', the above code is generated for each
n

literal operand.

(10) Push Element

Code: Q9999=QSTKM(l ,stacknum,iexp ,iexp2)

stacknum -- stack number

iexpl -- expression operand to push onto stack.

iexp 2 -- specified entry, or -1 if not present.

For 'PUSH mlv ON...', the following is generated:

Q9999=QSTKM (l,stacknum,QSTART(mlvnum),iexp
2)

Q9999=QSTKM(l ,stacknum,QSIZE(mlvnum),iexp2)
mlvnum -- the mlv number

1-29

(11) Pop Element

Code: Q9999=QSTKM(2,stacknum,O,O)

stacknum -- stack number.

The above code is generated for each stack operand in the pop element.

(12) Set Element

(a) SET mlv 1=mlv 2

Code: QSTART(mlvnuml)=QSTART(mlvnum2)

QSIZE(mlvnuml)=QSIZE(mlvnum
2)

(b) SET mlv=STRING (arg[,arg])
n

QSTART(mlvnum)=LENGTH

QSIZE(mlvnum)=IFPOS

Generate an immediate procedure

call to QSTRM with the

given arguments

(c) SET CASE svar=(element[,element])
n

Code: svar=O

[element 1 code]

svar=l

GO TO true

[element 2 code]

svar=2

GO TO true

o

1-30

(13) Terminal Element

Code: IF(QTERM(tpos,min,max, O.LT.GE 0) GO TO false

[If NOT prefix]

tpos -- terminal LTERMD position

min -- minimum number to find

max -- maximum to look for

(14) Null Element

Code: None generated

(15) False Element

Code: GO TO false

(16) Chain Element

Code: CALL QCHSTK

svar=CHAIN [if the svar operand is present]

(17) Fortran Element

Code: col 1 col 7

iexp literal

(18) Test Element

Code: IF(QLITSC(litpos,2).LT.O) GO TO 9002

(19) Field Element
01

Code: IF(QFIELD(iexp)) GO TO false

iexp -- the iexp field designator, if present

1-31

(20) Attribute Element

Code: CALL QATTR(func, tabnum 'exp 0
0 ptr attribnum

Isymp

func -- O=pack, l=unpack function

tabnum -- hash table number or symbol type, or zero for

'[UN]PACK svar' element, form (c).

iexp -- entry index operand.

ptr -- hash table running pointer name if no iexp operand is present

for element types (a) and (b).

attribnum -- the attribute number for the attribute name operand (svar),

if present.

(21) Error Element

(a) Warning Error

Code: Regular argument code

[for procedure args

CALL QARG1O (0,0,argptr)

argptr -- QPARGS position pointer for the arguments

(b) Regular Error

QERRSW=1

Regular argument code]

for procedure args

CALL QERR(argptr)

GO TO false

(c) Fatal Error

QERRSW=2

[Regular argument code]
for procedure args J
CALL QERR (argptr)

QCTI=O

GO TO 9002
argptr -- QPARGS argument pointer. 1-32

(22) Table Initializers

(a) Write Function

Code: CALL QTABD

(b) Read Function

Code: IF(QTABR(O).LT.O)GO TO false

(23) Debug Element

Code: IDEBUG(opnum)= o [OFF]

The above is generated for each detected option setting.

opnum -- an option number (1-6).

(24) Free Table Element

Code: CALL QFREE(tablenum)

tablenum -- a hash table number or symbol type.

The above is generated for each operand.

(25) Save/Restore Element

Code: SAVE iexpl iexp 2iexpn

[Save]Q9999=QSTKM(1,1 ,iexpl,-l)

Q9999=QSTKM(1, ,iexp ,-l)

Code: RESTORE svar 1 svar 2 ...svarn

svarl=QSTKM (2,1,0,0)

svarn=QSTKM (2,1,0,0)

1-33

The following is a summary of the label usage in the generated code:

2000+N -- Label for the alternative string to a false string.

8000+N -- Reoccurrence control labels.

3000+N -- CASE OF alternative labels.

6000+N -- N'th stepdown call in a module.

5000+N -- Start of mlv N.

7000+N -- General work label.

Whenever an mlv definition rule is detected for an mlv belonging to a

different module from the current one (i.e., resides at a different

statement level), the Module End routine is called to generate the module

epilog code. The following code is then generated:

SUBROUTINE QLEV i

QSYN=QCTI

Q9999=QMLV-j

GO TO (5001+j,5002+j,...,5000+m+j),Q9999

i -- the processing level of the new mlv (see STATEMENTS statement);

j -- the number of mlvs declared in the previous module

m -- the number of mlvs declared in this module.

1-34

MODULE: Module End

FUNCTION: Generates code to end the active FORTRAN subprogram module being

generated.

PROCESS:

The following standard code is generated:

9001 TRUTH=l

IF(QCTI.LE.QSYN) RETURN

GO TO 9004

9003 TRUTH=O

9004 CALL QSTEP

GO TO (6001,6002,...,6mmm),Q9999

950i CALL QLEVi

GO TO 1000

950n CALL QLEVn

1000 IF (TRUTH) 9002,9003,9001

END

m -- the number of step-downs in this module;

i,...,n -- the statement levels of mlvs called from this module which

reside in other modules.

IMPLEMENTATION:

In Meta-Language via bootstrapping (1.3).

1-35

MODULE: Wrap-Up

FUNCTION: Complete the generation of the defined compiler.

PROCESS:

The Module End routine is executed to generate the epilog code ending the

last generated module.

The following subroutine PEXEC is then generated, becoming the Deferred

Execution module of the Source Processor:

SUBROUTINE PEXEC

IF(QERRSW.LE.O.AND.TRUTH.EQ.-l)RETURN

IF(QERRSW.GT.O)GO TO 9999

1 IF(QUNSTK(Q9999).LE.O)RETURN

GO TO (100,101,102,...),Q9999

100 CALL procedurename 1

GO TO 1

101 CALL procedurename 2

GO TO 1

9999 CALL QERTXT

RETURN

END

procedurename--a semantic procedure name.

The procedurenames are those saved in table PRCLST.

1-36

The Front-End Declaration module is called to produce a group of declaration

statements on unit 5. A BLOCK DATA subprogram is then formed on the Generated

Compiler file (unit 6) by first writing the 'BLOCK DATA' statement and then

copying unit 5 onto unit 6. Then, the relevant arrays and control cells of

the Source Processor are initialized to the saved information derived from

Meta-Language declarations and rules as follows:

DATA QLVECT/[info in table LITLST and its attributes]/

DATA QPARGS/[stack QPARG data]/

DATA QTERMD/[stack LTERMD data]/

DATA QPRES/[stack NTABLE data]/

DATA QIMODC/[stack IMODES data]/

DATA QFIELD/[stack LFIELD data]/

DATA QTABP/[compressed literal string data (table CLITS);/

DATA QTABS/ error message data (CLITS); declared table

DATA QTABLE/layouts and sizes (TABLST)]

DATA QDEBUG/[the saved DEBUG declaration flags]/

DATA QLMODE/[array LMODES]/

DATA QLOPER/[array LOPERS data]/

DATA QALPH/lH,,IH.,...[using array INT to output each valid

language character; missing characters go out

as a zero constant]/

DATA QWDSZ,QOUTU,QINU,QPCHU,QHWD,QLIBU,QBIAS,QDIR

/decsize,2,1,3,4,qhwd ,5,qbias ,qdir/

decsize--declared host word size

qhwd--2**((QWDSZ+I)/2)

qbias,qdir--the bias and storage direction derived from the

STORAGE directive.

END

1-37

The subroutine QATR is generated as a function of the hash table and symbol

table declarative information in stack IATR for the purpose of packing and

unpacking table structures. It becomes the Attribute Maintenance Utility

submodule of the Source Processor:

SUBROUTINE QATTR (IFUNC,ITAB,IPTR,ATTNUM)

IP=IPTR

IF (ITAB.NE.O)GO TO 1

ITAB=IPTR/qhwd

IP=IPTR-ITAB*qhwd

I J=QTABP(1,ITAB)+QTABP(3,ITAB)+(IP-1)*QTABP(5,ITAB)

IF (IFUNC.GT.O)GO TO 5000

C PACK FUNCTION

GO TO (100,200,300,....),ITAB

C PACK TABLE I

100 IF (ATTNUM.NE.O)GO TO(101,102,....),ATTNUM

C PACK ATTRIBUTE 1

101 QTABS(J+wrdnum)=QOR(QAND(QTABS(J+wrdnum),imsk),QLSFT(QAND(

attrname,2**len-1) ,qwdsz-bitbeg-ten))
[normal case]

102 QTABS(J+wrdnum)=attrname [if fills whole word]

IF(ATTNUM.NE.O)RETURN

200 IF(ATTNUM.NE.O)GO TO(201,202,...),ATTNUM

RETURN

C UNPACK FUNCTION

5000 CONTINUE

GO TO (5100,5200,5300,...),ITAB

C UNPACK TABLE 1

5100 IF(ATTNUM.NE.O)GO TO(5101,5102,...),ATTNUM

C UNPACK ATTRIBUTE 1

5101 attrname=QAND(QRSFT(QTABS(J+wrdnum),qwdzs-bitbeg-len),2**1en-1)

[IF(attrname.GE.2**(len-1))attrname=QOR(attrname,isign)][signed value]

5102 attrname=QTABS(J+wrdnum) [if fills whole word]

IF(ATTNUM.NE.O)RETURN

1-38

5200 IF(ATTNUM.NE.O)GO TO (5201,5202,...),ATTNUM

RETURN

END

wrdnum--the declared host word position of an attribute.

imsk--a mask with zeros in the attribute bits, ones elsewhere.

len--bit size of an attribute.

bitbeg--bit start position of an attribute.

attrname--the attribute name.

isign--a mask having ones except for the rightmost len bits.

1-39

The final action performed is that of rewinding the temporary file (5) and

punch image file (3) in preparation for a scan of the generated compiler to

insert the declaration header generated by the Front-End Declaration module on

unit 5 onto the front of each generated module on unit 3. The result is a com-

pleted compiler on unit 6, which is then rewound and printed and/or punched

depending on options selected by the compiler writer (see Options module).

IMPLEMENTATION:

In Meta-Language.

1-40

MODULE: Front-End Declaration

FUNCTION: Produce a declarative section to be inserted in the front of each

generated subprogram.

PROCESS:

The Meta-Language declarative information is used to generate a sequence of

COMMON, DIMENSION, INTEGER, and EQUIVALENCE statements to be later inserted

into all generated modules by the Wrap-Up module. The declarative data is

stored in card image format on the temporary file (unit 5).

The declarations are produced in the following order:

INTEGER TRUTH,CURSOR,... [standard compiler cells]

INTEGER QSTART,QSIZE,QLVECT,... [standard compiler arrays]

INTEGER QBCHBI,QREOCE,... [standard compiler support functions]

INTEGER A,X,... [mlv cells-from table AUXNAM]

INTEGER FUNC,... [deferred semantic functions-table PRCLST]

COMMON/QLVECT/QLVECT(sizel)/QSTART/QSTART(mlvs)/QSIZE/QSIZE(mlvs)

/QTERMD/QTERMD(size2)/QPARGS/QPARGS(size3)/QPRES/QPRES(size4)/

QIMODC/QIMODC(size4)/QFIELD/QFIELD(size5)/QTABP/QTABP(5,numtab)/

QTABS/QTABS(decsize)/QCTAB/QCTAB(decsize)/QTABLE/QTABLE(256+decsize)/

IMAGE/IMAGE(decsize)/QFIXED/QDEBUG(8),QLMODE(13),QLOPER(3,23)

EQUIVALENCE(entryname,QTABP(2,tabnum)),... [for each table/stack]

COMMON/QCELLS/TRUTH,CURSOR,... [standard compiler cells]

COMMON/QCELLS/A,X,SYMP,... [user cells-all entries in table AUXNAM,

including variables, declared arrays,

attribute names]

COMMON/QTARG/QTARG(desize) [target definition area]

EQUIVALENCE(QNTWRD,QTARG(1)),(QNREGS,QTARG(2)),...

[fixed length target header-control variables]

1-41

MODULE: Deferred Execution

FUNCTION: To execute any deferred procedure calls controlling the execution

of MECOM.

PROCESS:

This module is executed by the Main Control routine in order to execute any

stacked procedured calls saved through the true parsing of the current Meta-

Language statement within MECOM. In addition, any warning errors, normal

errors, or fatal errors are listed at this time. The Textual Output module

is called to handle a stacked TEXT request (see Volume I, TEXT element).

IMPLEMENTATION:

Automatically generated as a result of MECOM being written in its own Meta-

Language.

1-42

MODULE: Textual Output

FUNCTION: Produces the actual card images forming the generated compiler.

PROCESS:

This module handles the execution of any TEXT output request made by the execution

of any modules within MECOM. The textual information is expanded and copied into

the output buffer and control is passed to the Punch module to generate the

punch image(s).

This module is never executed if the punch generation option to MECOM is de-

selected.

1-43

1.2 Internal Table Structures

Internal to the MECOM processor are several sets of table, stack, and array

structures containing symbolic and control information driving the compiler

generation process. With the exception of those structures having predefined

initialization values, the structures are prepared dynamically during the

Meta-Compilation process. Additional internal cells and flags exist within

METRAN but are not discussed in this document due to their readily apparent

use, such as control values, title and line controls, etc...

The information encoded within a word of a table, stack, or array is shown in

symbolic format, the exact bit positions of each item to be determined at

implementation time.

1.2.1 Hash Tables

The following tables are defined within MECOM for the purpose of saving

symbolic names and strings. Certain tables have a parallel set of attribute

values which may be referenced using the running table pointer.

Those tables having predefined symbolic entries and attributes are initialized

to their designated values at the time MECOM is initiated. This is accomplished

using the READ TABLES Meta-Language element, implemented through the MECOM

bootstrap algorithm (see section 1.3). The table entries will be constructed

using PUT and PACK elements followed by a WRITE TABLES element as a separate run.

1-44

Terminal Names - TNAME

Pointer: TNP

Attributes: Ztermpos

The table of terminal names. The attribute Ltermpos gives the starting word

position (in the generated LTERMD terminal driver array) for each terminal.

Literal Language Strings - LITLST

Pointer: LI

Attributes: Zitpos

The table of literal (quoted) strings detected during the Meta-Language parse.

The Zitpos attribute gives the position of the literal string (one character

(internal) per word with a leading character count word) in the generated array

QLVECT.

MLV Names - NAMLST

Pointer: NI

Attributes: level thread

reference thread

level thread -- LLEV stack pointer defining the mlv processing level;

reference thread -- mlv reference thread within SREFS stack.

The table of unique mlv names.

Equate Names - TEQU

Pointer: TEQUP

Attributes: intval

The table of equate names. The intval attribute gives the integer value to

which each equate name is equivalent.

1-45

Table/Stack Names - TABLST

The table of declared stack and table names.

Pointer: ITABS

Attributes: entry ptr name

entry len name

length

attribptr

entryptrname -- declared table/stack position pointer name in table AUXNAM;

entrylenname -- declared table entry length AUXNAM pointer for tables, or,

0 for stacks;

length -- declared table or stack length;

attribptr -- IATR table pointer for table attribute names, or,

zero for stacks.

1-46

Initialization:

The first eight table names which correspond to the compiler symbol table,

and their associated attributes as defined in Appendix A, Volume I, are

initialized to the indicated names and bit layouts. The two automatically

generated compiler stack names, PSTACK and QSTACK are also predefined with the

running pointer names PPOINT and QPOINT.

Auxiliary Names - AUXNAM

Table of stack and list control cells as well as any detected variable names.

Pointer: IAUX

Attributes: None

Initialization:

All system-defined variables, including control cells, symbol attributes, etc...

as described in the Source Processor design, are predefined in table AUXNAM.

Procedure Names - PRCLST

Table of deferred or immediate procedure reference names.

Pointer: NPRO

Attributes: None

Compressed Strings - CLITS

Table of compressed literal strings.

Pointer: ICLP

Attributes: None

All literals detected within a procedure reference or error request are saved

in this table in normal packed symbol format. The CLITS table within the gen-

erated compiler will be initialized to the contents of this table.

1-47

PROC Argument Names - TPARGS

Pointer: NPARG

Attributes: None

The table of argument names for the current PROC are being analyzed.

PROC Variable Names - PVARS

Pointer: NPVP

Attributes: None

The table of variable names referenced within all PROCs as operands.

Operation Names - OPTAB

Pointer: OPN

Attributes: startpos

startpos--starting position in stack NOPER of the operation descriptive

information.

The table of target machine operation names declared in the OPERATIONS statements.

Instruction Format Names - IFNAME

Pointer: IFN

Attributes: iformpos

iformpos--starting position in stack IFORM of the instruction format

descriptive information.

The table of instruction format names declared in the IFORM statements.

1-48

PROC Names - TPROC

Pointer: NPRC

Attributes: procpos

procpos--starting position of the PROC in the PROC skeleton stack

IPROC. If negative, the PROC name is equivalent to operation

'-procpos'.

The table of PROC expansion names.

Initialization:

All optional and required Operation Language term names (Volume I) are initially

placed within TPROC, since each may correspond to a PROC expansion. The

attributes are all set to zero (i.e., no expansion provided yet).

1.2.2 Stacks

The following stacks are defined within MECOM as dynamic last-in-first-out

program stacks holding single-word control entries. Most MECOM stacks have

an identical structure to an array within the generated Source Processor, and

are used to initialize the array by the Wrap-Up module via the generated

BLOCK DATA subprogram.

1-49

Terminal Driver Stack - LTERMD

Pointer: LTP

Format: b11 ell

S * Terminal 1
bkl eki
o 0 0

b. e" (Terminal n

0 0

b, e -- internal language character codes

Each bj , ejm pair represents an interval of language characters, from bjm to

ejm , any one of which satisfies terminal m. A terminal will be detected at

compile-time if the current language character is found to be within one of

the terminal's intervals. This stack is used to initialize the compile-time

stack LTERMD in the source processor.

1-50

Prescan Driver Stack - NTABLE

Pointer: NPNT

This stack is identical in structure to the NTABLE array driving the PRESCAN

activities of the lexical preprocessing function in the Source Processor.

The stack is used to initialize the array in the generated block data subprogram

by the Wrap-Up module.

Format: string control word 1

operand 1 (3 words) PRESCAN
string

operand 2 (3 words) tring

string control word 2 PRESCAN 1

string control word i

string control word 1

PRESCAN 2
string control word k

0 stack end

string control word:

+K -- pointer to next string in this PRESCAN;

-K -- pointer to first string of the next PRESCAN;

0 -- this is the last string of the last PRESCAN.

string operand:

word 1: ifflag, not flag, c

ifflag -- on if the operand has an IF prefix;

notflag -- on if the operand has a NOT prefix;

c -- operand control type.

1-51

Word 2 Word 3

C=l, Syntax Operand -K -- Xitptr columnnum

+K -- max, terminalpos

C=2, Value Request 0 0

C=3, Direct Execution index 0

C=4, SET NEXT FIELD 0 0

Request

C=5, COPY Request -K -- Zitptr count

+K -- max, terminalpos

C=6, SKIP Request -K -- titptr count

+K -- max, terminalpos

Zitptr -- literal string position in generated QLVECT array;

max -- maximum number of terminal occurrences (1 if single);

terminalpos -- terminal starting position in LTERMD terminal driver stack;

columnnum -- 0 -- use current prescan CURSOR value,

K -- use column K of current card image;

index -- the index of the directly executable relational IF or

replacement code;

count -- -1 -- COPY or SKIP THRU request,

O -- no count value,

1 -- word 2 is the actual number of characters to

SKIP or COPY,

2 -- SKIP or COPY the computed contents of VALUE.

1-52

Illegal Modes Stack - IMODES

Pointer: IMODE

This stack is identical in structure to the IMODES array in the Source Processor

controlling expression mixed mode validity checking. This stack is used directly

to initialize the array in the generated block data subprogram by the Wrap-Up

module.

Format:

Composed of triple-word entries followed by a zero word.

Word 1: 0 -- end of data

m1., mlh

Word 2: 01, Olh

Word 3: m2t, m2h

mll -- lower bound for mode one;

mlh -- upper bound for mode one;

01 -- lower bound for operator value;

Olh -- upper bound for operator value;

m21 -- lower bound for mode two;

m2h -- upper bound for mode two.

1-53

Symbol Attribute Stack - IATR

Pointer: IATRP

This stack contains symbol or hash table attribute information defining the

cell name and host field position for each declared attribute value.

Format:

nameptr,signflg declared
attribute

wordpos,bitpos,bit length
Table 1

nameptr,signflg attributes
wordpos,bitpos,bit length

0

nameptr--symbol attribute name pointer (in table AUXNAM);

signflg--on if a signed attribute, off if not;

wordpos--host word position;

bitpos--host bit start position within wordpos;

bitlength--number of bits to represent the attribute value.

Initialization:

The first eight IATR entries, corresponding to the default attributes and

bit layouts of the compiler symbol table, are initialized to the values

indicated in Volume I, Appendix A.

1-54

Label Control Stack - PSTACK

Pointer: PPOINT

Format:

Composed of two word entries:

Word 1: Zdeft

Word 2: ideff

kdeft -- the value of the true exit label out of the

current definition;

Adeff -- the value of the false exit label out of the

current definition.

Processing Level Stack - LLEV

Pointer: LPLEV

Format:

Composed of double-word entries:

Word 1: levelnum, mlv thread

Word 2: onceflag, recogflag

levelnum -- a processing level for the mlv as declared in the

STATEMENTS declaration;

mlv thread -- 0 -- no further levels for the mlv,

+N -- LLEV position for the next double-word entry;

onceflag -- indicates the statement processed by the mlv may

appear but once;

recogflag -- +N -- literal position (in QLVECT) for a literal

string acting as a statement recognition criteria;

-N -- statement recognized by mlv number N;

0 -- no criteria; simple include the mlv at level

levelnum.

Each mlv name has an attribute pointing to the first LLEV entry for that mlv.

1-55

Mlv Reference Stack - SREFS

Pointer: MREF

Format:

Composed of single-word entries:

mlvnum, thread

mlvnum -- the number of an mlv referencing the mlv in question;

thread -- SREFS pointer to the next reference word.

Each mlv name has an attribute pointing to an MREF entry defining a series of

-eferences to the mlv.

Procedure Argument Stack - QPARG

Pointer: QPNA

This stack is identical to the QPARGS array in the Source Processor, which con-

tains argument control words and values for all procedure references. The stack

is used to initialize the array in the generated block data program by the

wrap-up module.

Format:

argcount 1

argtype 11 Procedure call Procedure call 1

value 11 argument

argtype ln

value ln

argcount 2

argtype 21 Procedure call 2

argtype 2K

1-56

argcount -- number of argument control and value words

following, collectively forming one procedure call;

argtype -- -1O00+K -- this is a procedure call to semantic routine

number K (K'th PRCLST table name). This word will be

followed by the first real argtype word.

-K -- argument type as defined below:

argtype Value Word[s] Meaning

-1 [None] PUNCH operand (TEXT request)

-2 [None] PRINT operand (TEXT request)

-3 columnnum (0 if variable) COLUMN operand (TEXT request)

columnnum -- column value

-4 [None] EJECT operand (TEXT request)

-5 label (0 if variable) EJECT label operand (TEXT request)

label -- label value

-6 start (0 if variable) ELEMENTS OF operand

end (0 if variable) start -- start position

stacknum end -- end position

stacknum -- stack number

-7 0 Hash/Symbol Table operand

-9 intval (0 if variable) Single-valued expression operand

intval -- integer value

-10 litptr Literal string operand

litptr -- literal position in QLVECT

-11 mlvnum MLV operand

mlvnum -- the mlv number

1-57

Field Specification Stack - LFIELD

Pointer: LFP

This stack is identical in structure to the LFIELD array in the source

processor controlling cursor movement within fields. The stack is used

directly to initialize the array in the generated block data subprogram by

the Wrap-Up module.

Format:

Composed of double-word entries:

word i: startcol

word iH: endcol

startcol--starting column for field i (0 if unknown);

endcol--ending column for field i (0 if unknown).

Register Identification Stack - NREGS

Pointer: NTREG

Format:

word i: size

size--the declared size for register i.

Operation Pointer Stack - NOPER

Pointer: NOPSIZ

Format: nameptr

K, opcode

iforml, iform2, An OPERATION definition

iformk-1, iformk

1-58

nameptr--operation name pointer (table OPTAB);

K--number of optional instruction formats;

opcode--op code value;

iformi--instruction format name pointers (table IFNAME).

Each entry of this stack represents a declared OPERATION having several

optional instruction format types. Prior to encoding this table into a

target definition, the Library Update module replaces the iform pointers

with the corresponding table IFORM starting positions.

Instruction Format Descriptor Stack - IFORM

Pointer: IFSIZ

Format: bitlen

type,start,end An IFORM specification

type,start,end

bitlen--instruction bit length;

type--operand type;

start--operand start position in generated instruction;

end--operand end position in general instruction.

Active Strings Stack - QSTACK

Pointer: QPOINT

Format:.
word i: startpos

startpos--active PROC string starting position within IPROC stack.

The i'th entry of this stack points to the start position of the active string

at level i of the current PROC.

1-59

Active Elements Stack - ACELM

Pointer: NACE

Format:
word i: startpos

startpos--active PROC element starting position within IPROC stack.

The i'th entry of this stack points to the start position of the active element

at level i of the current PROC.

PROC Expression Stack - PEXP

Pointer: NEXP

Format: operand 1 (2 cells)
A PROC

operator 1 Expression

operand 2 (2 cells)

0

operand--PROC operand of the same form as described for operands in

stack IPROC;

operator--l = +

2= -

3 *

4=/
5 = **

0 = end of the expression

PROC Skeleton Stack - IPROC

Pointer: IPROCP

This stack contains the interpretive description of each defined PROC. It is

used to initialize the IPROC array in the Function Processor driving the

execution of the PROC Expansion module.

1-60

Format: PROC i next-string-ptr

(Table TPROC(i) element-type, next-element-ptr
attribute) element-operand

element 1

element-operandk
stringstring 1

element-type,next-element-ptr

element-operand

element 2

element-operandi

next-stri ng-ptr

string 2

next-string-ptr--O if this is the last PROC string; or,

points to the next string entry within IPROC.

next-element-ptr--O if the last element of this string; or,

points to the next element entry within IPROC.

element-type--control code defining the type of element:

Element Type Element-Operand[s]

l=Replacement left variable operand-ptr

right side operand-ptr

2=Condition test neg-flag, cond-code

operand-ptr

operand-ptr

3=NULL element CNo operand]

4=FALSE element [No operand]

5=PROC call neg-flag, proc number (table TPROC index)

operand-ptr [argument 1] [if any]

operand-ptr [argument n]

1-61

Element Type Element-Operand[s]

6=Code request operation code pointer (within table NOPER)

operand-ptr [argument 1] [if any]

operand-ptr [argument n]

7=Support function call function number (table PRCLST index)

operand-ptr [argument 1] [if any]

operand-ptr [argument n]

8=Substring [no operand]

neg-flag--on if element preceded by NOT prefix; OFF otherwise.

cond-code-- I=LT, 2=GT, 3=EQ, 4=NE, 5=LE, 6=GE.

operand-ptr--A general PROC operand of the form:

operand-type, operand-value

Operand-Type Operand-Value

O=variable variable position within IPROC

l=integer the integer value itself

2=1iteral string string index within CLITS table

3=location counter 0

($ reference)

4=symbol pointer contained variable position within IPROC

in a variable

5=expression starting position of the expression

within PEXP stack

6=PROC argument argument number

7=TYPE OF operand argument number

-K=simple expression of operand-ptr for an operand of

the form: types 0, 3, 4, or 6.

operand + K
or

K + operand

1-62

1.2.3 Arrays

The following arrays are declared within MECOM as fixed-length arrays having

the described format.

Register Types - RTYPE

Size: 26

Format: One word per alphabetic letter:

bit i: On if register i is included in the register class,

off if not.

Internal/External Conversion - INT

Size: [total number of Meta-characters, to be determined at

implementation time]

Format:

word i: Target machine representation for Meta-character i.

Computational Modes - LMODES

Size: 13

Format:

word i: Zero if mode i is allowed in the language being defined.

Operator Flags - LOPERS

Size: 23

Format:

word i: hierarchy, commutivity, associativity for operator i.

1-63

1.3 Meta-Translator Bootstrap

The development of MECOM from the existing METRAN Meta-Translator will proceed

as a series of discrete steps, each step resulting in a more powerful version

of MECOM. Each new version will thus have additional Meta-Language capability

which may be utilized to define the next version. The final result will be a

Meta-Compiler (MECOM) capable of generating itself from a description of itself

in Meta-Language as well as the required C.W.S. compilers. Thus, MECOM will be

generated as a compiler, although only the Source Processor module and its

supporting routines will be utilized.

The development phases and the capability included at each phase are as follows:

Phase 1: Modify existing stack and table structures

a. Hand-code or modify all table support modules (see 2.2);

b. Meta-code table attribute and symbol table parsers;

hand code attribute pack/unpacking code generation;

c. Add READ[WRITE] TABLES capability via Meta-Language and QTABD,

QTABR modules;

Result: Extended METRAN with dynamic symbol tables and stacks, along with

parallel attributes and initialization capability.

Phase 2: Add lexical preprocessing capabilities

a. Recode QMORE, QTERM, QCONV modules;

b. Meta-code required parsers; generate main driver program;

c. Using all the above extensions, rewrite METRAN using more powerful

Meta-language. Delete SCAN and NOSCAN logic.

Result: MECOM, version 1.

1-64

Phase 3: Element extensions

a. Meta-code extended element capability within rule definitions:

1. Symbol table manipulators

2. STRING element

3. TEST element

4. FIELD element

5. FREE element

6. SAVE/RESTORE elements

Result: Extended MECOM, version 1

Phase 4: Code generation refinements

a. Convert rule definition string and element parsing to new scheme
(see Rule Definition module);

b. Improve generated code; provide linkages to semantic processing routines;

c. Utilize new false/true label management algorithm in code generation;

d. Remove all current 'M' support routines, or recode those required

in Meta-Language;

e. Meta-compile MECOM.

Result: MECOM, version 2

Phase 5: Target definition capability

a. Add target declaration parsers;

b. Add PROC encode parsers;

c. Code Library Update module;

incorporate Compiler Library Data file.

Result: MECOM, version 3

1-65

Phase 6: Language declarative extensions

a. Add parsers for language declaration statements;

b. Redesign parser front-end code generation for INITIALIZER and

STATEMENTS processing; delete MODULE CONTAINS and BEGIN MODULE

capability;

c. Add options parsing capability.

Result: Completed METCOM.

1-66

2. SOURCE PROCESSOR

The design of the Source Processor is described in this section. The major

modules and submodules are identified, their functions are inter-related, and the

supporting internal data structures are described. A collection of hand-coded

semantic support functions are defined as to function and calling sequence.

The main body of the Source Processor, in the form of a collection of parsers,

is generated by the Meta-Compiler as a function of the input Meta-Language.

2-1

2.1 Program Logic Modules

The Source Processor consists of a collection of distinct modules organized into

two basic groups: syntax parsing and semantic processing.

The syntax parsing routines are further divided into two sections: the statement

parsers and the syntax support modules. The statement parsers are generated in

FORTRAN as a result of the mlv definitions of the compiler language provided by

the compiler writer. The syntax support routines are hand coded in FORTRAN and

are table driven to a certain extent by the arrays described in section 2.3,

which are initialized by the Meta-Compiler as a result of declarations in Meta-

Language.

The semantic processing routines are organized into two general groups: utility

support and language semantics. The utility routines provide for general com-

pilation support of all other modules. Language semantics routines respond to

specific processing requirements of the Semantic Profile of the application

programs.

Figure 2, the Source Processor block diagram, illustrates the interrelationships

between each module and the internal and external data paths.

2-2

01770

SOURCE PROCESSOR BLOCK DIAGRAM

MAIN CONTROL

STATEMENT COMPILER DEFERRED
DECDEEND OPTIONSDECODE INITIALIZE END OPTIOEXECUTION

STATEMENT
PARSERS

SYNTAXSUPPORT INTERNAL 1 LANGUAGE UTILITYSUPPORT , _=
1 DATA SEMANTICS SEMANTICS

SSYMBOL 1 DATA
SOURCE TERMINAL TABLE DECLARATIVE ERROR
INPUT 3 DETECTION HASH REPORT

P U TR A ID T R N S E R. , =. , =

TABLES EXPRESSION I
LITERAL STACKS SUPPORT

PRI SCAN LANGUAGE 3
TARGET UTILITY

DEFINITION1 .7
USER i HEADER PROGRAM | STACNK

DAT I CNTO

SOURCE CELLS DEFINITION I FUNCTION
2 TERM

UNIT 1 UBLOCK CONTROL
LIBRARY ID TRANSFER

I/O "
PROGRAM
LISTING

CEXNECUTI NA
CONDITIONA9

LISTINEXECUTION

UNIT COMPILERI I FUNCTION

LIBRARY LOOP LANGUAGE
CONTROLDATA

UNIT 4 - - UNIT 3

FIGURE 2.

MODULE: Main Control

FUNCTION: Coordinates and controls the execution of all other logic modules

and sub-modules of the Source Processor.

PROCESS:

The Main Control module initiates execution of the Source Processor and retains

control at all levels. It performs the phased execution of a collection of overlay

modules, each of which is responsible for syntax and semantic processing of a

section of the compiler language.

The Options module is executed to read the first user card image and extract the

option parameter settings. The Compiler Initialize module is then called to

perform initialization functions, such as reading any predefined symbol or hash

tables and stacks, clearing pointers, etc...

The Statement Decode module is then repetitively executed to recognize each

language statement and call the corresponding processor. Subsequent to processing

a given statement, control returns to Main Control and the Deferred Execution

module is executed to process any deferred procedure calls.

Upon encountering the ending statement of the language, MAIN calls the End module

to generate the storage and linkage maps completing the compiler listing (if any).

The Function Language file (unit 3) is then rewound and control is passed to the

Function Processor.

IMPLEMENTATION:

Main Control is coded in FORTRAN as a standard driver program.

2-4

MODULE: Compiler Options

FUNCTION: Reads and parses the options card.

PROCESS:

A single card image of the format specified in section 1.4, volume I, is

parsed and the compiler control parameters are saved.

IMPLEMENTATION:

Hand coded in FORTRAN.

2-5

MODULE: Compiler Initialize

FUNCTION: Initialize all structures controlling compiler execution.

PROCESS:

Any stacks or symbol and/or hash tables requiring presetting to initial values

or strings are read into memory by calling the Library Input syntax support

module. All other control cells, including stack and table pointers and lengths

are automatically cleared. The BLOCK DATA initialization data generated by the

Meta-Compiler is also included in this module to set parser control information

(literals, etc...).

IMPLEMENTATION

This module is generated automatically as a function of the $INITIALZER mlv in

the Meta-Language definition (see Volume I).

2-6

MODULE: Deferred Execution

FUNCTION: To execute any deferred semantic procedure calls.

PROCESS:

This module is executed by the Main Control routine in order to execute any

stacked procedured calls saved through the true parsing of the current compiler

language statement by the statement parsers. In addition, any warning errors,

normal errors, or fatal errors are listed at this time.

IMPLEMENTATION:

Automatically generated through detection of semantic requests in the Meta-

Language compiler description.

2-7

MODULE: Print Output

FUNCTION: Prints a line image from the designated argument buffer with internal

to external conversion.

PROCESS:

The argument array is converted from internal character numbers to external 'Al'

format characters, which are then sent to the standard print output device

(unit 2).

IMPLEMENTATION:

Exists in FORTRAN, and is equivalent to the Print module of the current Meta-

Translator.

2-8

MODULE: Statement Decode

FUNCTION: Identifies each compiler statement and invokes the corresponding

processor.

PROCESS:

Each compiler input statement is typically associated with one or more processing

levels. Each level has an associated processing module for handling all state-

ments at that level. The Statement Decode module identifies each individual

statement in a given level and maintains the level counter. Unrecognizable

statements or statements appearing out of the declared order (i.e., a previous

level) are flagged as such.

Upon decoding a particular language statement, its associated processor is executed

and control returns to the Main Driver module. Each statement processor is

represented by code generated as a result of mlv definitions in Meta-Language.

IMPLEMENTATION:

This module is generated from a predefined mlv by the Meta-Compiler. The STATEMENT

LEVELS Meta-Language declaration defines the recognition criteria, processing

level, and occurrence frequency for each processing and support mlv.

2-9

MODULE: Source Input

FUNCTION: Reads and formats compiler language statements.

PROCESS:

The Input module supports all parsing functions through maintenance of the

input image buffer and the control cells CURSOR and LENGTH.

Whenever CURSOR exceeds LENGTH this module is invoked to perform the following

tasks:

a. If a field has been terminated and another field is available,

CURSOR and LENGTH are updated and control returns; otherwise,

b. A new card image is read in, the Print module is called to list it,

and the declared continuation rules are applied to see if the card

is part of the current statement. If not, a statement end character

(-1) is placed in the input and control returns; otherwise,

c. The card image is pre-scanned as a function of the lexical PRESCAN

directives. This results in comments, noise words, and possibly

blanks to be skipped, and literals and other constructs to be copied.

d. The resulting modified card image is added to the image buffer as part

of the current statement, and the LENGTH and CURSOR cells are updated.

The arrays QTERMD, QFIELD, and QPRES are used to interpretively drive the process.

2-10

IMPLEMENTATION:

This module and its supporting sub-modules are to be hand coded in FORTRAN.

Certain submodules involve modification of existing support routines for the

Meta-Compiler, developed via the bootstrap development of the Meta-Compiler as

outlined in section 1.3. In fact, the implementation of source input mechanism

in the fully bootstrapped Meta-Compiler will result in a 95% complete imple-

mentation of the compiler Source Input module.

2-11

MODULE: Syntax Support

FUNCTION: Provide utility functions manipulating characters in support of all

parsers.

PROCESS:

This module actually consists of a collection of submodules designed to support

the character manipulation functions required during parsing activity. The

submodules are linked directly within the generated code constituting the statement

Darsers via parameterized subprogram calls. Thus, the mlv's written in Meta-

Language by the compiler writer results in a series of syntax support function

calls in most cases.

The key submodules and their overall tasks are described below:

0 Character Conversion (QCONV)

Provides for internal to external, external to internal character

conversion for all language characters.

O Literal Scan (QLITSC)

Searches for a match between a literal and the input image

buffer in support of literal mlv operands.

o Reoccurrence Maintenance (QREOCB, QREOCE)

Supports the repeated application of a group of mlv elements

organized as a reoccurrence element, including cursor maintenance,

control stack (QCTAB) maintenance, etc...

O Table Manipulation (QSTACK)

Supports the entry of symbols or literals into symbol tables and hash

tables. Maintains the arrays QTABP, QTABS, and QSTACK containing

hashed strings and pointers.

2-12

o Step-Up/Down (QSTEP)

Handles the step down into an mlv, with the associated saving of

information on stack QCTAB, the control stack. This module also

restores this saved status information when a step up from an mlv

is performed.

o Terminal Detection (QTERM)

Searches for a parameterized number of occurrences of a given terminal

syntax element starting at the current position in the image input

buffer.

All theabove syntax support modules currently exist as support routines to the

existing Meta-Translator. They require only minor modifications to provide

full syntax support to the Source Processor. The support submodules listed below

are new and will be hand coded:

o Stack Manipulation (QSTKSR, QSTKM)

Adds and deletes entries from dynamic stacks and searches for values

contained on stacks.

o String Manipulator (QSTRM)

Supports the Meta-Language STRING element. This module will be coded

in a similar manner to the existing TEXT support routine QTEXT,

except that the textual strings will be formed and concatenated in

the input buffer rather than the output buffer.

o Attribute Maintenance (QATTR)

This support function will be generated as a function of the SYMBOL

ATTRIBUTE and TABLE Meta-Language statements by the Meta-Compiler

(see section 1). It will handle packing and unpacking of all table

structures.

2-13

o Compiler Library Input

The module inputs both a compiler initialization entry and a

target definition header from the Compiler Library Data file

(unit 4). The initialization data contains initial values for

stacks and hash or symbol entries and their attribute fields. The

data is associated with the particular compiler by name. The header,

or fixed length, portion of the designated target machine is also

input since certain semantic functions in the Source Processor

utilize this information. The file is left positioned at this

point so that the remainder of the target definition (PROCS, etc...)

can be read in by the Function Processor during the next phase of

compilation.

Compiler Library Output

This module handles the creation of a compiler initialization data

entry on the Compiler Library Data file. The data is associated

with the name of the compiler.

2-14

MODULE: Utility Semantic Support

FUNCTION: Provide utility functions to support all parsers and semantic

functions.

PROCESS:

This module actually consists of a collection of submodules designed to perform

various support tasks for the statement parsers and language semantic processors

as indicated below:

o Argument Stacking (QARGIO)

Handles the stacking of all variable length deferred and immediate

calls from parsers to support functions, or between support functions

themselves. The arguments are stacked onto control array QCTAB from

the argument descriptor array (QPARGS) such that multi-level deferred

calls can be made concurrently.

o Error Report (QERR)

This module prints error messages associated with FATAL and ERROR

Meta-Language elements onto the print file. Any control diagnostics,

such as dynamic table/stack overflows or control stack overflows

are also printed directly along with any selected debug monitoring

messages resulting from compiler options and the DEBUG Meta-Language

element.

The above utility support functions currently exist as support routines in the

existing Meta-Translator system. They require only minor modifications for

operation within C.W.S.

2-15

The following support function is required to facilitate generation of

Function Language output:

o Function Term

This module accepts a variable number of arguments and creates a single para-

meterized Function Language term on unit 3 as output. The first argument

provided is an integer value representing the desired F.L. term operator.

The remaining arguments provided are the F.L. parameters and include:

(a) symbol pointers

(b) integer values

(c) literal string pointers

2-16

MODULE: Optimization Support

FUNCTION: Partition source program into basic blocks.

PROCESS:

The semantic functions in the Language Semantics group require support in the area

of block partitioning of a user source program and maintenance of associated

labels. This information will be subsequently utilized by the Function Processor

code generation mechanics and optimization submodules.

The Optimization Support module consists of a collection of submodules to process

block formation and interrelationships. The resulting information is encoded

into the Block Identification and Symbol Tables, and special Function Language

terms are generated. The overall logic is illustrated by Figure 2-2.

Each major submodule is described below as to function and effects. The call

requests and interfaces with the Language Semantics routines are described in

section 2.2 for each individual routine.

Block Identifier:

" Creates a new program block;

O If a label is passed as an argument, it is associated with the block;

otherwise, an internal label is created for the association;

O The new block entry is encoded into the Block Identification Table;

O The label association with the block is marked in the Symbol Table,

label segment.

2-17

OPTIMIZATION
-. SUPPORT

-r LANGUAGE
SEMANTICS

__ DATA......]

DECLARATION

S ... POLISH STACK TO GO WITH CURRENT BLOCK UUrCTION FUNCTION
EXPRESSION TERM j LANGUAGE

LANGUAGE BLOCK
UTILITY DEPENDENCY j

PROGRAM
DEFINITION

' .BLOCK
BLOCK L . --- ID

CONTROL IDENTIFIER TABLE
TRANSFER ISTRUC -

CONDITIONAL iCOND - INITIATORCK 'BEGIN .LABEL'

-SEND
LOOP LOOP

CONTROL LOOP

AiN

!.. _TEST .

__,BLOCK

FIGURE 2.2 OPTIMIZATION SUPPORT LOGIC FLOW

Block Initiator:

o Outputs a 'Begin Block label' function term;

o The block associated with the argument label is activated. All code

following up to the next call to this routine will be associated with

this block;

o Multiple block initiation requests to the same block are allowed.

Block Dependency Handler:

o For a single label argument, marks a path from the currently active

block to the argument block;

o For two label arguments, marks a path from the block associated with the

first label to the second block;

o If either label is undefined (i.e., not yet associated with a block),

the Block Identifier is called to associate the label[s] with block[s].

New Label Handler:

o Its argument label is passed to the Block Identifier (if undefined)

to assign it to a block;

o The Block Initiator is called to start a new block.

New Statement Identifier:

o Calls the New Label Handler if the new statement has a label (or labels);

o Calls the Block Dependency Handler to reflect a flow path to the newly

created block from the previous block if not in a transfer of control mode

(see 2.2);

O Checks for the statement having a label if in a Transfer of Control mode;

O Resets any transfer of control mode.

2-19

MODULE: Language Semantics

FUNCTION: Provide for the semantic processing of parsed ooerands in the

statement parsers.

PROCESS:

This module consists of a collection of submodules, each performing the required

processing of a high-level, highly parameterized, semantic request. The semantic

requests are found within the mlvs written by the compiler writer in the statement

processors.

The Argument Stacking Utility Support routine handles the required linkage and

passes the actual argument values to the specific semantic processor.

The following section (2.2) defines the function, calling sequence, arguments,

and effects of each of the currently specified semantic functions. Each

corresponds to a specific language requirement, and must be hand-coded in FORTRAN.

2-20

MODULE: End

FUNCTION: Terminates the Source Processor.

PROCESS:

The End module is initiated when the END statement of the compiler language is

encountered and the END semantic request is invoked by the compiler writer in

the processing mlv.

The END Function Language term is output to the Function Language file.

The program print listing is completed with the addition of the variable

storage map and STATISTICS (see 2.3).

Any unterminated loop or conditional blocks are flagged by calling the Error

Report module.

2-21

2.2 Semantic Support Functions

The submodules defined in this section act as support routines to the Language

Semantics module. The routine descriptions are divided into semantic categories

corresponding to the semantic profile. The generated Function Language resulting

from each semantic call is indicated where applicable. The Function Term

support submodule is called to pass any F.L. terms to unit 3.

In the descriptions of the semantic procedure arguments a reference to a symbolic

name of any type (variable, array, etc...) used as an argument has any of the

following forms:

o A symbol pointer to the symbol table segment or hash table

and the sequence number within;

0 An mlv representing the symbolic character strings. The mlv

will be automatically placed within the symbol table in the

appropriate segment.

2-22

2.2.1 Data Declarative Functions

FUNCTION: ARRAY Array Declaration

CALL: ARRAY (N, Dl[,DI])

ARGUMENTS: N -- Array name.

DI -- Integer value of the i'th dimension of N, or a simple

variable name for the i'th dimension.

EFFECTS: 1. Marks N as an array and links the dimension vector Dl,...

DI to N through the symbol link.

2. The dimension vector is stored in QTABLE.

2-23

FUNCTION: EQUATE Equivalence of Symbols

CALL: EQUATE (-I,S[,DI][-I,S[,DI]])

ARGUMENTS: S -- Variable name symbol pointer

El -- Index vector of integer constant pointers defining the

logical offset to S [if any array or table item].

EFFECTS: 1. The arguments collectively define an equivalence group that

is to be assigned the same memory address. For arrays, tables,

and table items the group address is assigned to the indicated

index element.

2. For a simple variable S, there are no DI.

3. For an array or table item S, the number of DI should match

the dimensionality of S or equal one, in which case DI is the

index offset to S.

4. All such equivalence data is saved by group in the array

QTABLE exactly as input via the call arguments. This information

will be subsequently utilized by the Memory Assignment module

of the Function Processor.

2-24

FUNCTION: COMMON COMMON Data Declaration

CALL: COMMON(NAME,Sl[,SK])

ARGUMENTS: NAME -- Global (COMMON) block name.

S1,...,SK -- Order-dependent pointers to variables or arrays.

EFFECTS: 1. Places NAME in the symbol table as a block name.

2. Links each SI with NAME in the symbol table.

3. Sets the relocatability of each SI to "global COMMON."

4. The Function Processor assigns NAME a separate control

section and gives each SI a relative offset based upon

its order of declaration, precision, and size.

5. Multiple Global references to the same NAME are allowed,

but only one reference for each SI.

2-25

FUNCTIoP: ITEM ITE! DFCLARATInM

CALL: ITEM(NtAMEMODE,SECMODE.PREC,S,R,FRAC ,BIT,PK)

ARGUMENTS: NIAME -- The item name.

MODE -- The item mode

SECMODE -- Secondary item mode (O=none)

PREC -- Precision in bits (bytes for texual items)

S -- Siqned Flaq (O=NO,1=Yes)

R -- Round Flan (O=NO,1=Yes)

FRAC -- Number of Fractional bits (for fixed point items)

BIT -- Bit startinq position within allocated cell [qenerally

appropriate only for table items]

PK -- Packina Density

EFFECTS: 1. The item name is placed in the symbol table (if an ,ILV or strina).

2. The indicated attributes are flaoned in the symbol table.

3. If within an internal procedure or function, the item is marked as

"local". If it matches a previously occurrina global symbol, a new

entry is forced into the symbol table.

4. A check is made to insure that only one item declaration is active

at any niven time.

5. All the input parameters except the first are optional. A null

parameter should be represented by successive commas (i.e., ,)

if any parameters follow.

2-26

FUNCTION: INIT Data Initialization

CALL: INIT (-J,V[,I][,-J,V[,I]],0,M,C[,M,C]

ARGUMENTS: V -- Variable, array, table, or table item name pointer

I -- Integer-Valued subscript pointers for V (if array or table item)

M -- Integer Repeat Values

C -- Constant Pointers

J -- Integer Increment Value for the following V.

EFFECTS: 1. The variables (V) are initialized to the constants (C).

2. There must be a one-to-one corresnondence between the variables and

constants; or, a single Variable may occur defining a base location

for the constant list.

3. The repeat values M allow the followinq constant C to be repeated

M times.

4. The variable pointers V (along with subscripts I) define the initial

location to start storinq the corresponding M constants C. This

location is incremented by J cells each time.

GENERATED FL: DATA -J,V[,I],O,M,C[,M,C]

2-27

FUNCTION: TARLF Table Declaration

CALL: TABLE (NAME ,TYPE, ,PACK, IIIMENJI .DSFr I ,W!DNUM, IT-TINU!M, I PCK)

AR.UMFNTS: NAME -- Table Name Pointer or .LV

TYPE -- Parallel (=0)

Serial (=0)

P -- Table Riniditv (O=rinid)

PACK -- Packinn - 0-None. 1-medium, 2-dense. 3-tinht

NI! FN -- ?Number of Entries

!SFNI -- !!umber of Tarnet Words/Fntry (O=comniler determined)

I -- Table Item Pointers

!)!NUM -- Word nosition for I (-l=compiler determined)

PIT'!UM -- Bit nosition for I (-1=cnmpiler determined)

IPACK -- Item nackina density (0=none)

EFFECTS: 1. A [rinid] narallel or serial table is defined with desiana.ted packino

den.sitv, number of entries, words ner entry, and table items.

2. The conventionswith respect to allocation of table items within

tarqet words are identical to those of the lannuane SPL.

3. Each table item is linked with the table name 'NA.E throuah the

symbol table.

2-28

2.2.2 Expression Manipulation

Expressions are manipulated and resolved into a Polish string through

the use of two stacks: PSTACK and QSTACK. These two stacks are always

present whenever expressions are utilized as source elements.

PSTACK is the polish stack of operands and operators representing the

expression; its associated pointer is PPOINT. QSTACK is a temporary

stack for holding operators to be placed on PSTACK on a priority basis

as well as operand computational modes; its associated pointer is QPOINT.

The hierarchies of each operator are found in the vector QLOPER. This

vector is preset to the normal operator hierarchies but may be changed

by the compiler writer via an OPERATOR Meta-Language declarative.

The format of PSTACK and QSTACK is described in section 2.3. Figure 2-1

gives the logic flow for the expression handling routines referenced

in this section.

2-29

01771

EXPRESSION MANIPULATION LOGIC

OPAND OPTOR STEXP

ADD OPERAND ~ ADD OPERATOR START
SUBEXPRESSION

OPLAST = LAST ADD O
OPERAND OSTACK OPERATOR OPERATOR TO

STO QSTACK
PSTACK

O POP ARE OP AND
OPERAND EXIT OSTACK OPLAST ZERO?

I MODE
S TO

S OSTACK - POP TWO MODES]
, i X I N I FROM QSTACK

EXI It CHECK MODES VS
PUSH O DOES HIER (OP) OPLAST
I EXCEED HEIR

| PSTACK $ ON OSTACK (OPLAST)
P PUSH RESULT MODE

O POLISH ON OSTACK
STACK EXIT

SSTACKI A POP QSTACK
I DEFERRED

OPERATORS
PUSH OPLAST

OPERAND ON PSTACK
MODES

FIGURE 2-1

FUNCTION: STEXP Renin A (Sub)Exnression

CALL: STEXP

ARGUMENTS: None

EFFECTS: 1. Indicates the heainninq of a distinct subexoression, i.e., a

collection of onerands and operators collectively reoresentinn a

separate item (oossibly embedded within a laraer expression).

2. The effect of this function call is: 'PUSH 0 on nSTACK'

3. Subexoressions examples include:

... +. (B*C E)-....

... *A(E-1,D,F+2)

A=B*C-E

4. A subsequent occurrence of an 'end expression' onerator (i.e.,

OPTnR(O)) causes all stacked onerators down to this point to he

moved from QSTACK to PSTACK.

2-31

FUNCTION: OPAND Add Operand to Polish Strine

CALL: OPAND (PTR)

ARGUMENTS: PTR -- the operand symhol pointer

EFFECTS: 1. The operand (PTP) is placed on the cumulative olish strinq PSTACK.

2. The effect of this function is enuivalent to:

'PUSH PTR ON PSTACK'

3. The computational mode of the operand is fetched from the symbol

table and is stored on QSTACK (the mode portion).

2-32

FUNCTION: OPTOR Add Operator to Polish String

CALL: OPTOR (OP)

ARGUMENTS: OP -- the operator number

EFFECTS: 1. The operator OP is added to the polish string PSTACK on a

priority basis.

2. The declared hierarchy of an operator determines whether it is

placed immediately on PSTACK or is temporarily stacked on QSTACK.

3. A 'terminate (sub)expression' operator (OP=O) causes all delayed

operators (on QSTACK) down to the most recent 'begin expression'

(0) operator to be placed on PSTACK on a last-in first-out basis.

4. A 'begin list' or 'end list' operator, signifying the beginning or

ending of a parameter list for the last operand (procedure, array,

table, or table item), is placed directly on PSTACK.

5. If the hierarchy of OP exceeds the hierarchy of the last entry on

QSTACK, OP is placed on QSTACK (the hierarchy of 'begin expression'

(0) is defined as zero).

6. If not case 5, the last operator on QSTACK is placed on PSTACK and

QSTACK is popped once. The stacked operator is then checked for

mode compatibility with the last two mode entries on QSTACK (mode

portion) using table QIMODC. The two mode entries are then popped

from QSTACK (mode portion) and are replaced on QSTACK by the result

mode. The result mode is typically the maximum of the two modes

depending on the operator (i.e., the result mode of a relational

operator acting on two arithmetic operands is logical.

7. Step 5 is repeated.

2-33

FUNCTION: GEN Generate An Expression

CALL: GEN(PI[,PI])

ARGUMENTS: PI -- Operands, operators, or Polish string stacks.

EFFECTS: 1. A polish string is formed as a composite of the arguments PI, and

is passed through the Function Language.

2. The PI are formed in the resulting polish string in the order

presented.

3. A operand which is all or a portion of a stack (typically PSTACK)

is assumed to have been previously generated via calls to STEXP,

OPTOR, and OPAND.

4. The composite expression is not mode checked for operand/operator

mode compatibility (see OPTOR).

EXAMPLES: 1. GEN(ELEMENTS OF PSTACK)

Pass the previously formed polish string PSTACK to the Function

Language.

2. GEN(I,ELEMENTS OF PSTACK,.STORE)

Pass a polish string for storing an expression result in PSTACK

into the variable pointed to by I.

3. GEN(I,I,N,.PLUS,.STORE)

Pass a polish string to perform: I=I+N

GENERATED FL:

GEN E CE is the resulting composite polish string formed from the PI]

2-34

2.2.3 Utility Functions

FUNCTION: UCON Create A Universal Constant

CALL: UCON(ARG[,IM][,PREC])

.L

ARGUMENTS: ARG -- STRING, MLV, or integer value

IM -- the constant mode

PREC -- the constant target precision

EFFECTS: 1. Forms a machine - independent constant in the vector VALUE from

the argument ARG.

2. If ARG is simply a value, it is placed as is in VALUE. The global

cells IM and PREC are then set to the second and third input

parameters. Default values for missing parameters are 'inteer'

and WORD.

3. If ARG is a string or MLV it is parsed to form the machine-

independent value at VALUE. Legal constant types include:

signed integers

signed real and double-real with optional sinned exnonent

complex

fixed point

Hex

Octal

Binary

Literal Strings (Texual)

The constant syntax is as defined in FORTRAN and SPL.

4. If the IM argument is missing, IM is set to the mode derived from

parsing the ARG. If the argument IM is Hex, binary, or octal the

appropriate base is used for the number conversion; otherwise, the

2-35

base 10 is assumed. Texual constants renuire an innut IP of 'texual'

and the entire strina of MLV ARG defines the texual constant, i.e.,

no parsinq function is performed.

5. If PREC is missinq it is set to the minimal word size renuired to

hold the constant value for inteaer, real, fixed point, and comnlex:

and the minimal byte size renuired otherwise. If PREC is oresent

as an argument, it must be greater or enual to the derived

minimally reauired orecision.

EXAMPLES: *UCON(1) Forms an integer constant of one target word.

*UCON('l.0',REAL,32) Forms a floating point constant of 32 bits.

*UCON('ABCD',TEXUAL) The texual constant ABCD is formed.

*UCON(SCON) The MLV CON is parsed to determine the

constant value.

2-36

FUNCTION: MKCON Make a Constant Entry

CALL: MKCON(ARG,IM,PREC)

ARGUMENTS: ARG -- String, MLV, or integer value

IM -- The constant mode

PREC-- The constant target precision

EFFECTS: 1. Calls UCON to build a universal constant.

2. Places resulting CONVAL vector in the symbol table as a hashed entry.

3. Sets SYMP to resultinq symbol pointer.

2-37

FUNCTION: STATID Statement Identification

CALL: STATID[(label[,label])]
n

ARGUMENTS: label -- Statement Label Pointers (if any).

EFFECTS: 1. Defines the beginning of a new statement with labels label,....

2. The labels are eventually associated with the first instruction

of a block of code.

3. The New Statement Identifier module is called with the argument

labels (if any).

GENERATED FL:

STAT

[LDEF LABEL[,LABEL]] if labels
n

[BEGIN LABEL]

2-38

FUNCTION: LREF Label Reference

CALL: LREF(LABEL[,LABEL])

ARGUMENTS: LABEL--Statement label pointers.

EFFECTS: 1. Indicates a reference to a program label within the body of

a statement.

2. The label[s] are placed in the symbol table.

3. The Block Dependency Handler is called with the argument

labels to handle block dependency.

2-39

FUNCTION: ADATA Assign Data to Control Section

CALL: ADATA(LAB,ARG)

ARGUMENTS: LAB -- Label pointer to assign to the data to be output.

ARG -- MLV - MLV character string

String - Literal string

Value - Data constant pointer

EFFECTS: 1. Assigns LAB to next cell in the data control section (if present).

2. Dumps the string (MLV or Literal) or indicated constant.value at

the label location.

GENERATED FL:

ADATA LAB,ARG [if LAB is present]

2-40

FUNCTION: MODIFY Modify a Symbol

CALL: MODIFY (VI[,VI])

ARGUMENTS: VI -- Symbol Pointers

EFFECTS: 1. Tells the Function Processor optimizer that each VI is changed

through execution of the current statement.

2. Sample usages - READ statements; direct code.

GENERATED FL:

MOD VI[,VII

2-41

FUNCTION: NEGATE Ilake Necative Constant

CALL: NEGATEF(I)]

ARGUMENITS: I -- Constant Pointer

EFFECTS: 1. If I is present the necative of the constant value is placed at

VALUE; otherwise, VALUE itself is necated.

2-42

FUNCTION: SIGN Get Constant Sian

CALL: SIGN(CI)]

ARGUMENTS: I -- Constant Pointer

EFFECTS: 1. Returns the siqn (O=ositive, 1=neaative) of the constant nointed

to by I (if present) or of VALUE.

2-43

FUNCTION: LDCON Load a Constant Value

CALL: LDCON(I)

ARGUMENTS: I -- Constant pointer

EFFECTS: 1. Moves the value of the constant into VALUF.

2-44

FUNCTION: PUTCON Put a Constant Value Into
Symbol Table

CALL: PUTCON

EFFECTS: 1. Puts the constant value in VALUE into a uninue position in the

symbol table.

2. The resultinq symbol pointer is SYMP.

2-45

FUNCTION: CONOP Perform Constant Operation

CALL: CONOP(OP,I[,PREC])

ARGUMENTS: OP -- An operation to perform between constant values.

I -- Second constant operand pointer.

EFFECTS: 1. VALUE is replaced by VALUE OP I, where OP is 1 -- +

2---

4--

2. A mode conversion is performed if the modes of the two operands

differ.

3. If PREC is specified, it must be larqe enouqh to carry the result.

If not specified it is set to the minimal word size required.

2-46

2.2.4 PROGRAM DEFINITION

FUNCTION: PROG(NAME,REC,REN,M,L[,PI,RI])
n

ARGUMENTS: NAME -- Subprogram Name (MLV, string, or pointer)

REC -- Recursive Flag (O=No, l=Yes)

REN -- Reentrant Flag (O=No, l=Yes)

M -- Type ----- 0 = Main program
1 = Subroutine subprogram
2 = Function subprogram
3 = Closed subroutine [see CLOSE function]
4 = Entry Point [see ENTRY function]

L -- Linkage --- 0 = DEF symbol [an entry point]
1 = REF symbol [defined externally]
2 = Internal only

PI -- Parameter Pointers

RI -- Parameter Type (O=neither, 1=output, 2=input, 3=both)

EFFECTS: 1. NAME is placed in the symbol table (if an MLV or string) and is

marked as a global procedure name of type M and linkage L.

2. The PI are marked as dummy (formal) parameters of type RI and are

linked to NAME. They are considered to be local symbols.

3. An externally defined function (L=l) causes no FL generation -

its Symbol Table entry contains all required information.

4. A global subprogram (L=O) causes the subprogram name pointer

to be saved in cell QGSUBP as the active global subprogram.

5. A new block is created and initiated with the current block

pointer saved. The current block will be restarted upon en-

countering the subprogram EXIT call. The new block is associated

with the subprogram name in the Symbol Table.

6. An exit block is created and its label pointer is saved in a

cell for subsequent use by the EXIT (and RETURN) functions.

2-47

GENERATED FL:

L=l (global subprogram name):

BEGIN 1 [the subprogram prolog block]

[.exit]

.MAININ [m=O]NAME, REC, REN
ESUBIN [m=l or 2]

EXDUMMY 1, Pl, Ri [if any arguments]

EXDUMMY i, Pi, Ri

B .begin [entry point transfer label -
see END function]

BEGIN 2 [start block 1 - first body block]

L=2 (internal subprogram):

BEGIN 1 [the subprogram prolog block]

[.exit]

ISUBIN NAME, REC, REN

INDUMMY 1, P1, Ri

INDUMMY i, Pi, Ri

B .begin [first subprogram block]

BEGIN .begin

2-48

FUNCTION: CLOSE

CALL: CLOSE (NAME)

ARGUMENTS: NAME -- Closed subroutine name (MLV, string, or pointer).

EFFECTS: 1. Defines the start of an internal closed subroutine to be later

terminated by an EXIT command.

2. The subroutine may not have parameters nor return a value.

3. A new block is initiated after saving the current block label.

The closed subroutine is associated with the new block in the

Symbol Table.

GENERATED FL:

BEGIN .label

CLOSP NAME

2-49

FUNCTION: ENTRY Entry Point Definition

CALL: ENTRY (NAME[,LABEL][,PI,RI])

ARGUMENTS: NAME -- Entry point name (MLV, string, or pointer)

LABEL-- Internal entry point label (assumed to be '*' if missing).

PI -- Parameter pointers

RI -- Parameter type (O=neither, l=output, 2=input, 3=both).

EFFECTS: 1. Defines NAME as an entry point to the currently active procedure.

The attributes REC, REN, and L of the active procedure are applied

to NAME.

2. The PI are marked as dummy (formal) parameters of type RI and

are linked to NAME. They are considered local symbols.

3. The LABEL identifies the transfer label for the entry point.

Its absence implies the current location counter, causing a new

block to be created and initiated.

4. The old [current] block is saved for later restoration (see

EXIT function).

5. The new block (LABEL or created) is associated with the entry

point in the Symbol Table.

GENERATED FL:

BEGIN 1 [the entrance prolog block]

(EENTIN) NAME,REC,REN [L=l]

IENTIN [L=2]

" EXDUMMY iPi,Ri [L=l]

INDUMMY [L=2]

B [LABEL][.begin]

BEGIN [LABEL][.begin]

2-50

FUNCTION: END

CALL: END[(LABEL)]

ARGUMENTS: LABEL -- Transfer point upon entry.

EFFECTS: 1. Terminates compilation of all active programs.

2. If LABEL is present, its associated block is also associated

with the transfer label of the global subprogram being ter-

minated (see PROG function).

If absent, the subprogram transfer label is associated with

block 1, the initial code body block.

3. A flag is set signaling the end of compilation to the Main

Driver program.

2-51

FUNCTION: RETURN Return from Active Subprogram

CALL: RETURN[(E)J

ARGUMENTS: E -- the returned expression value (or null).

EFFECTS: 1. A transfer is made to the exit point of the active function

(see PROG and EXIT) with the value of E, which is converted to

the mode of the active function procedure.

2. Sets the Transfer of Control mode, thus requiring a label on

the next statement.

GENERATED FL:

RETURN

GEN E

GO .EXIT [the exit block for the active subprogram]

2-52

FUNCTION: EXIT

CALL: EXIT[(E)]

ARGUMENTS: E -- the returned expression value (or null).

EFFECTS: 1. The expression result value (if any) is converted to the mode

of the active procedure.

2. The proper exit is made from the procedure or close.

3. All variables and formal parameters local to the procedure

are unlinked from the symbol table.

4. The procedure exit block is initiated.

5. Any output parameters cause value return code to be generated.

6. For a termination of an internal function, the saved original code

block for the previously active global program is restored.

GENERATED FL:

[GEN E] [if E present]

BEGIN .exitblock [start the exit block

(EXRETDUHM i,P [argument return code-type 1 or 3 args]
INRETDUM

MAINEX

ESUBEX
SUBEX NAME,REC,REN [terminate active.subprogram]

SISUBEX

CLOSEX

BEGIN .oldblock [if not terminating the globally active

subprogram]

2-53

2.2.5 PROGRAM TRANSFER CONTROL

FUNCTION: IDXSW Indexed Switch List Definition

CALL: IDXSW (NAME[[,L][,C][-l,SNAME,IND]],T)
n

ARGUMENTS: NAME -- Switch Name (string, MLV, or pointer)

L -- Label or location variable pointer

C -- Closed subroutine name pointer

SNAME -- Pointer to another item switch name

IND -- Integer constant or variable specifying the index into

the switch SNAME

T -- Test flag (O=No checking)

EFFECTS: 1. Defines NAME as an indexed switch list containing labels, location

variables, closes, or other switch references. Code will be gen-

erated to transfer to the I'th location parameter upon the ref-

erence "GO TO NAME (I)."

2. If the test flag is non-zero, code is generated to test for a

valid switch reference.

3. A location parameter of zero implies no branch is to occur for

the corresponding value of the index at invocation time.

4. A new block is created and a path is marked from it to all the

blocks associated with the argument labels or closed subroutine

names. A switch name argument causes all its associated blocks

to be included also. A location variable pointer causes all

blocks (including future ones) to be path associated with the

new block. The new block is flagged in the Symbol Table entry

for NAME.

GENERATED FL:

IDXSW NAME[[,L][,C][-I,SNAME,IND]],T
n

2-54

FUNCTION: ITMSW Item Switch Declaration

CALL: *ITMSW(NAME,SIP[,K,L][,K,C][K,-I,SNAME,IND],T)
n n n

.L

ARGUMENTS: NAME -- Switch name (string, MLV, or pointer)

SIP -- Switch item pointer

K -- The pointer to the comparison constant for a given alternative.

L -- Label or location variable pointer

C -- Closed subroutine name pointer

SNAME -- Pointer to an indexed switch name or item switch name with a

scalar item pointer.

IND -- Integer constant or variable pointer indicating the indexed or

item switch reference "SNAME(IND)."

T -- Test Flag (O=No checking).

EFFECTS: 1. Defines NAME as an item switch containing labels, location variables,

closes, or other item or indexed switch references.

2. The reference "GO TO NAME [(Il[,IN])]"
n

has the meaning: TEMP = SIP[(Il[,IN])]
n

IF TEMP EQ K GO TO L

IF TEMP EQ K GO TO C

IF TEMP EQ K GO TO SNAME(IND)

3. A location parameter of zero implies no branch is to occur.

4. If the test flag is non-zero, code is generated to test for a

valid reference.

5. A new block is created and is associated with NAME in the Symbol

Table. A path is defined from the block to all blocks associated

with labels, other switch lists, and closed subroutines. If a

location variable is present, a path is marked to all other blocks

(future and current).

2-55

GENERATED FL:

ITMSW NAME,SIP[,K,L][,KC][K,-1,SNAME,IND],T
n n n

2-56

FUNCTION: GSWCH Switch Transfer

CALL: GSWCH (NAME,[E][,E])
n

ARGUMENTS: NAME -- Switch List Name Pointer (Indexed or Item)

E -- Polish Expression String[s]

EFFECTS: 1. For index switches this call processes a switch transfer to the

switch NAME at offset E. The conversion of the expression E to an

integer value is done automatically.

2. For item switches, the expressions E define the index to the switch

item pointer. The E are converted to integer values automatically.

3. The Block Dependency Handler is called to reflect a path from the

current block to the block identified with NAME.

4. For an index switch the Transfer of Control mode is set if the switch

NAME does not contain null branch points, thereby allowing a switch

invocation with no transfer followed by a flow to the next statement.

5. For an item switch the expression EE is constructed from the E

subscripts to reflect the following transformation:

GO TO NAME[(E[,E])] becomes
n

GO TO NAME[(item-switch-name(E[,E])]
n

GENERATED FL:

INSXFR NAME[,E] [Indexed switch transfer]

ITSXFR NAME[,EE] [Item switch reference]

[current block + switch block]

2-57

FUNCTION: GO(L)

CALL: GO(L)

ARGUMENTS: L -- Label or Location Variable Pointer

EFFECTS: 1. Processes a direct transfer to a label or through a location

variable.

2. The Block Dependency Handler is called with argument L if a label.

3. The Transfer of Control mode is set.

4. If L is a location variable a path is constructed from the current to

all other blocks.

GENERATED FL:

GO L

[current block - .L]
or

[current block + [all blocks]]

2-58

FUNCTION: IXFER Indexed Transfer

CALL: IXFER L[,L],TEST,E
n

ARGUMENTS: E -- Integer Index Polish Expression

L -- Program label pointers

TEST -- Test Flag (O=No Test Code)

EFFECT: 1. The integer value of E is used as an index to transfer

to the appropriate label L.

2. If TEST NE 0, E will be tested for negative or greater or

equal to N, in which case no transfer is made.

3. The Block Dependency Handler is called for each L label.

4. The Transfer of Control mode is set.

GENERATED FL:

IXFER L[,L],TEST,E
n

2-59

FUNCTION: CXFER Computed Transfer

CALL: CXFER(I[,L][,TEST)
n

ARGUMENTS: I -- Location Variable Pointer

L -- Program label pointers

TEST -- Branch Test Flag (O=No Test)

EFFECT: 1. Implies a transfer to the contents of I.

2. The legal values for I are the L.

3. If TEST=O, an indirect branch is made to I.

4. The Block Dependency Handler is called for each label L.

5. The Transfer of Control mode is set.

GENERATED FL:

CXFER I[,L][,TEST]
n

2-60

2.2.6 Conditional Transfer of Control

FUNCTION: IFCOND

CALL: IFCOND(E)

ARGUMENTS: E -- logical or relational expression

EFFECTS:

1. Defines the start of a collection of conditionally executed mode

blocks, called a structure, corresponding to an IF-THEN-ELSE-type

language construct.

2. The expression E defines the condition under which the initial condition

block is to be executed.

3. Subsequent IFALT calls define alternative condition blocks to be

executed within the scope of the active structure.

4. The structure is ended by a subsequent SEND call.

5. The Block Identifier is called to define the following blocks:

a. The structure end (successor) block;

b. The initial condition block.

The current (structure predecessor) block and structure end blocks

are saved in the Condition Stack.

6. The condition code is generated and the Block Initiator is called to

activate the initial condition block.

7. An implied mode block length of one statement is set such that a new

statement encountered later causes an automatic BEND to be generated.

GENERATED FL:

[.SE]

GEN E, [.C11],.CONDBRANCH

BEGIN .Cll

2-61

FUNCTION: IFALT

CALL: IFALT(E)

ARGUMENTS: E -- logical or relational expression.

EFFECTS:

1. Defines a conditionally executed block which is to be considered an

alternative to the active structure.

2. Corresponds to an ORIF language construct.

3. The expression E defines the condition under which the block is to

be executed.

4. The Block Identifier is called to create the condition block.

5. The structure predecessor block (in the Condition Stack) is activated

and the condition code is generated.

6. The condition block is then activated.

GENERATED FL:

BEGIN .SP

GEN E,[.Cli],.CONDBRANCH

BEGIN .Cli

2-62

FUNCTION: IFELSE

CALL: IFELSE

EFFECTS:

1. Defines the start of the last alternative block for the active

structure.

2. Activates the structure predecessor block, outputs a transfer to the

alternative block (call to GO), and then activates the alternative

block.

GENERATED FL:

BEGIN .SP

GO .SA

BEGIN .SA

2-63

FUNCTION: BLOCK Mode Block Identification

CALL: BLOCK

EFFECTS: 1. Identifies the start of a conditional or loop later terminated

by a call to BEND or AEND.

2. For conditional mode blocks a call to BLOCK is required to

override the implied mode block length of 1 statement.

3. For loop blocks:

a. For a 'Test before execute loop' [see LOOP function] a branch

to the loop test block is generated. The Block Dependency

routine is called to reflect a path from the loop predecessor

block to the test block.

b. For a normal loop the Block Dependency routine is called to

reflect a path from loop predecessor block to the body block.

c. The Block Initiator is called to start the loop body block.

GENERATED FL:

B .LTEST [for loop blocks]

START .LBODY [for loop blocks]

2-64

FUNCTION: BEND

CALL: BEND

EFFECTS: 1. Identifies the end of a mode block initiated by the most recent

BLOCK call.

2. For a loop block end:

a. The Block Initiator is called to start the loop successor

block.

b. The Block Dependency routine is called to reflect the

following block paths:

current block [last of loop]----loop increment block [most recent]

loop increment block--- loop increment block [most recent to

previous, for this loop]

loop increment block [outermost]---loop test block

loop test block---loop body block

loop test block----loop successor block

3. For a conditional block end:

a. For the currently active structure, a branch to the structure

end (successor) block is generated.

GENERATED FL:

[See above]

2-65

FUNCTION: SEND Structure End

CALL: SEND

SEND

EFFECTS: 1. Acts like BEND for all active blocks within this structure.

2. Drops structure end block, thus ending the active structure,

by calling the Block Initiator.

3. Deletes an entry from the Condition stack.

GENERATED FL:

BEGIN .SE

2-66

FUNCTION: AEND End All Compound Statements

CALL: AEND

EFFECTS: 1. Closes all open loops and conditionals. Acts like repeated SEND

and BEND calls until no more conditionals, loops, or structures

are active.

GENERATED FL:

(See BEND and SEND]

2-67

Examples:

[FORTRAN] Semantic Calls Generated Function Language

IF(A.LT.B)X=X+l IFCOND(A,B,<) [.SE]

GEN A,B,[.C11],.BLT

BEGIN .Cll

GEN (X,X,l,+,=) GEN X,X,1,+,=

[BE ND]

GO .SE

[SEND]

BEGIN .SE
IF(A)GO TO 10 IFCOND(A) [.SE]

GEN A,[.C11],.BT

BEGIN .Cll
GO (.10) GO .10

[.C11 - .10]

[BEND]

GO .SE

[SEND]

BEGIN .SE

[SPL] [in block,]
IF A THEN B=C IFCOND(A) [.SE]

GEN A,[.C11],.BT
ELSE B=D END BEGIN .Cll

BLOCK

GEN (B,C,=) GEN B,C,=

BEND

GO .SE
IFELSE BEGIN s:

GO [.SA]

[-+ .SA]

BEGIN .SA
BLOCK

GEN (B,D,=) GEN B,D,=

BEND

GO .SE
SEND

2-68 BEGIN .SE

Semantic Calls Generated Function Language

IF A GR B THEN Q=C IFCOND(A,B,>) [in block o<]

[.SE]

GEN A,[.C11],.BT

BEGIN .C11

BLOCK

GEN (Q,C,=) GEN Q,C,=

BEND

GO .SE

ORIF Z LS 8 A=B C=Q IFALT(Z,8,<) BEGIN o(

GEN Z,8,[.C12],.BLT

BEGIN .C12

BLOCK

GEN (A,B,=) GEN A,B,=

GEN (C,Q,=) GEN C,Q,=

BEND

GO .SE

ORIF Z GT 9 GO TO NEXT IFALT (Z,9,>) BEGIN <

GEN Z,9,[.C13],.BGT
BLOCK

GO (.NEXT) GO .NEXT

BEND

GO .SE

ELSE A=C Q=B IFELSE BEGIN o(

GO [.SA]

BEGIN .SA

BLOCK

GEN (A,C,=) GEN A,C,=

GEN (Q,B,=) GEN Q,B,=

BEND

GO .SE

END SEND

BEGIN .SE

2-69

Semantic Calls Generated Function Language

IF A EQ B IF D E=F IFCOND(A,B,.EQ) [in block c<]

[.SEl]

GEN A,B,[.C11],.BEQ

BEGIN .C11

BLOCK

IFCOND(D) [.SE2]

GEN D,[.C21],.BT

BEGIN .C21

BLOCK

GEN (E,F,=) GEN E,F,=

AEND [BEND]

GO .SE2]

[SEND]

BEGIN .SE2

[BEND]

GO .SE1

[SEND]

BEGIN .SE1

[JOVIAL]

IFEITH A NQ B $ IFCOND(A,B,$) [in blocko]

[.SE1]

GEN A,B,[.C11],.BNE

BEGIN .Cll
BEGIN BLOCK

X=X+l$ GEN(X,X,1,+,=) GEN X,X,1,+,=
END BEND

GO .SE1
ORIF A-1 GR B $ IFALT(A,1,-,B,>) BEGIN co

GEN A,1,-,B,[.Cl2],.BGT

BEGIN .C12
C=C-l $ GEN(C,C,l,-,=) GEN C,C,1,-,=

[BEND]

GO .SE1

2-70

Semantic Calls Generated Function Language

ORIF A EQ 0 $ IFALT(A,O,.EQ) BEGIN o<

GEN A,O,[.C13],.BE

BEGIN .C13

BEGIN BLOCK

C=B+l$ GEN(C,B,1,+,=) GEN C,B,I,+,=

GO TO Hl$ GO(.Hl) GO .H1

END BEND

GO .SE1

ORIF 1 $ IFELSE BEGIN ck

GO .SA

BEGIN .SA
B=A$ GEN (B,A,=) GEN B,A,=

END SEND

BEGIN .SEI

2-71

2.2.7 LOOP CONTROL

FUNCTION: LOOP Repetitive Loop Definition

CALL: LOOP(T,LV[,E])

ARGUMENTS: T -- Loop Type:

0 = No initial branch to limit code

1 = Implied branch to limit test prior to loop execution

LV -- Loop Induction Variable Pointer

E -- Loop initialization expression for induction variable LV.

EFFECTS: 1. Implies start of a repetitive loop mode block.

2. If T=l, a branch to the corresponding test code is generated

prior to the first statement in the loop body.

3. Creates the loop body and successor blocks (.LBi and .LE1)

by calling the Block Identifier. The resulting labels and

the LV pointer are encoded into the Loop Control stack.

4. The current block label is also saved in the Loop Control stack.

GENERATED FL:

GEN LV,E,=

LOOP T,LV,LB,LE

2-72

FUNCTION: PLOOP Parallel Loop Definition

CALL: PLOOP (LV[,E])

.L

ARGUMENTS: LV -- PLOOP Induction Variable Pointer

E -- PLOOP initialization expression for LV

EFFECTS: 1. The start of a parallel loop to the currently active loop

is implied.

2. The block preceding the first loop block is reactivated by

calling Block Initiator.

3. An entry is made into the Loop Control stack.

GENERATED FL:

BEGIN BEFORE [The BLOCK preceding the loop]

GEN LV,E,=

PLOOP LV

2-73

FUNCTION: LINCR Loop or Parallel Loop Increment

CALL: LINCR[(E)]

ARGUMENTS: E -- Loop incrementation expression for active [parallel] loop.

EFFECTS: 1. The incrementation expression for the current loop or parallel

loop is defined.

2. The Block Identifier is called to create an increment block.

3. The Block Initiator is called to activate the block and the

increment expression is passed.

4. The block label is encoded in the Loop Control stack.

GENERATED FL:

BEGIN .LIi [loop increment block]

GEN LV,LV,E,+,=

LINCR LV[LV is the active [parallel] loop variable]

2-74

FUNCTION: LTEST Loop Test Definition

CALL: LTEST(T[,E])

ARGUMENTS: T -- Truth Flag:

1 = Repeat loop when true (i.e., WHILE)

0 = Repeat loop when false (i.e., UNTIL)

E -- Relational Truth Expression

EFFECTS: 1. Defines conditions under which the loop is to be repeated

(WHILE) or ended (UNTIL).

2. The UNIQUE loop test block for this loop level is created

(if non-existent) and initiated by calling the Block Identifier

and Block Initiator.

3. The block label is encoded in the Loop Control stack (if not

already there).

4. The relational operator is reversed for a WHILE condition so

that a false jump is always reflected in the test code, and is

then replaced by a corresponding conditional branch instruction.

GENERATED FL:

BEGIN .LTi [Loop Test block for this loop level]

GEN E,.LEND,.COND BRANCH [.LEND is the block following the loop]

LTEST LV[The loop variable for the active[parallel] loop]

2-75

Examples

[FORTRAN] Semantic Calls Generated Function Language

[in block:.]

DO 100 I=1,10,2 LOOP(O,I,l) GEN I,1,=

• LOOP O,I[,.LBI,.LEl]

LTEST(1,I,10,5) BEGIN [.LT1]

GEN I,10O,.LE1,.BGT

LTEST I

LINCR(2) BEGIN [.LIl]

GEN I,I,2,+,=

LINCR I

BLOCK BEGIN .LBI

[- .LBl]

100 CONTINUE STAT(.100) BEGIN .100

[.LB1 -*.100]

BEND BEGIN .LEI

[.100 -.LI1]

[.LI1 +.LTI]

[.LT1 +.LB1]

[.LT1 +.LEI]

[FORTRAN] [in block]

DO 200 I=1,100 LOOP(0,1,1) GEN I,1,=

LOOP O,I[,.LB1,.LE1]

LTEST(1,I,100,<) BEGIN [.LTI]

GEN I,100,.LE1,.BGT

LTEST I

LINCR (1) BEGIN [.LIl]

GEN I,I,1,+,=

LINCR I

BLOCK BEGIN .LB1

E - .LB1]

2-76

Semantic Calls Generated Function Language

DO 300 J=L,M LOOP(O,J,L) GEN J,L,=

LOOP 0,J[,.LB2,.LE2]

LTEST(1,J,M, <) BEGIN [.LT2]

GEN J,M,.LE2,.BGT

LTEST J

LINCR(1) BEGIN [.LI2]

GEN J,J,1,+,=

LINCR I

BLOCK BEGIN .LB2

[.LB1 - .LB2]
300 CONTINUE STAT(.300) BEGIN .300

[.LB2 - .300]
BEND BEGIN .LE2

[.300 - .LI2]

[.LI2 + .LT2]

[.LT2 + .LB2]

[.LT2 - .LE2]

200 CONTINUE STAT(.200) BEGIN .200

[.LE2 - .200]

BEND BEGIN .LEI

[.200 + .LIl]

[.LIl + .LT1]

[.LT1 4 .LB1]

[.LT1 .LE1]

[SPL] [in block -]

FOR C=O BY 2 UNTIL 101 LOOP(l,C,O) GEN C,1,=

LOOP 1,C[,.LB1,.LEI]

LINCR(2) BEGIN [.LIll]

GEN C,C,2,+,=

LINCR C

2-77

Semantic Calls Generated Function Language

LTEST(O,C,101,.EQ.) BEGIN [.LT11]

GEN C,1O1,.LE1,.EQ.

LTEST C

ALSO D=50 BY 1 PLOOP(D,50) BEGIN -.

GEN D,50,=

PLOOP D

LINCR(1) BEGIN [.LI12]

GEN D,D,1,+,=

LINCR D

ALSO E=5 PLOOP (E,5) BEGIN

GEN E,5,=

PLOOP E

BLOCK BEGIN

GO .LT1

[-,. .LTI]

BEGIN .LB1

FOR F=1OO0 BY -2 WHILE F GR 0

LOOP(1,F,100) GEN F,100,=

LOOP 1,F[,.LB2,.LE2]

LINCR(-2) BEGIN [.LI21]

GEN F,F,-2,+,=

LINCR F

LTEST(1,F,O,>) BEGIN [.LT2]

GEN F,O,.LE2,.BLE.

LTEST F

ALSO G=7 BY L UNTIL 91

PLOOP (G,7) BEGIN .LB1

GEN G,7,=

PLOOP G

LINCR(1) BEGIN [.L122]

GEN G,G,1,+,=

LINCR G

LTEST(O,G,91.,EQ.) BEGIN [.LT2]

GEN G,91,.LE2,.EQ.

LTEST G

2-78

Semantic Calls Generated Function Language

BLOCK BEGIN .LBI

GO .LT2

[.LB1 +.LT2]

BEGIN .LB2

TEST(C) TEST(C) GO .LIll

[.LB2 +.LIll]

[BEGIN .LB21]
TEST TEST GO .LI22

[.LB21 - .LI22]
[BEGIN .LB22]

END BEND BEGIN .LE2

[.LB22 ..L122]

[.L122 -*.LI21]

[.LI21 .LT2]
[.LT2 - .LB2]

[.LT2 .LE2]
END BEND BEGIN .LE1

[.LE2 - .LIl2]
[.LI]2 + .LIll]

[.LIll .LT11]

[.LT1 * .LBl]

[.LT1 * .LE1]

2-79

2.3 Internal Data Structures

Several control arrays are present within the Source Processor for the purpose of

driving the parsing and semantic processing of the compiler source language. These

arrays are typically allocated and initialized by the Meta-Compiler as a function

of the declarative information supplied by the compiler writer in Meta-Language,

such as lexical definition, language declaratives, encountered literals, and hash

table, symbol table, and stack declarations.

The format and use of each control array is described below, with the information

encoded within host words in symbolic format (the exact bit positions are to be

determined at implementation time). Many of the arrays have an exact correspondence

with a stack or array in the Meta-Compiler used to initialize the array in the

BLOCK DATA initializer of the Source Processor.

Literal Vector - QLVECT

Format: word 1: n

word 2: C1

word n+l: Cn

n -- the number of characters in the literal.

Ci -- the i'th literal character in internal format.

Use: This array is used to store all literal operands in the Meta-Language

compiler definition which are used as search operands. The array drives

the Literal Scan syntax support submodule (QLITSC).

2-80

MLV Association Arrays - QSTART, QSIZE

Format: QSTART QSIZE

word i: startpos length

startpos -- starting position in the input image buffer (IMAGE) of

the construct associated with mlv i.

length -- the corresponding length, in characters, of the mlv i.

Use: These two arrays identify the position and length of the language construct

satisfying the most recent application of each mlv. They are reset by the

Step-Up/Down support submodule when a true step-up is performed.

Terminal Driver - QTERMD

Format: (see stack LTERMD, section 1).

Use: This array contains the encoded information enabling the Terminal Detection

support submodule to find terminal constructs in the input image buffer

(IMAGE).

Argument Control - qPARGS

Format: (see stack QPARG, section 1).

Use: This array contains the argument descriptions and values associated with

deferred and immediate semantic function calls. This information is

utilized by the Argument Stacking support submodule in moving the arguments

for a particular semantic call onto the control stack QCTAB.

2-81

Prescan Driver - QPRES

Format: (see stack NTABLE, section 1).

Use: This array controls the prescanning activity implied by PRESCAN Meta-

Language statements. The process takes place in the Source Input module

at the time a card image is appended to the current compiler language

statement.

Illegal Mode Combinations - QIMODC

Format: (see stack IMODE, section 1).

Use: This array specifies which combinations of operands and operators are

flagged as illegal by the Operator Language semantic submodule.

Field Specifiers - qFIELD

Format: (see stack LFIELD, section 1).

word i: startcol

word i+l: endcol

startcol -- starting column for field i.

endcol -- ending column for field i.

Use: This array defines the field boundaries, if any, for language statements.

The field information is used by the Source Input module to maintain cursor

movement from a field to the next field.

2-82

Dynamic Table/Stack Control - QTABP, QTABS, QTABLE

Formats:

QTABP QTABS

1 tpos tpos SPI Packed
index Symbol
curlen ' Pointers'
percent SPcurlen (QSTACK).A
alen The Symbol alen words AL Table

STable alen words Al Entry
Segments Table

8 tpos alen words Acurlen butes
index
curlen ,
percent spos valuel
alen value2

Other Declared , A Stack
Tables Entry

STables valuecurlen
spos
index
curlen The Stack
percent PSTACK
0

0 QTABLE
spos tabnum ssn next ,
index
curlen The Stack 256 Hash
percent QSTACK words 0 Area

: Other Declared next tabnum ssn next
Stacks .

next i tabnum ssn 0
Collision
Pointers

spi n C1 C2 ... Ck and
1 Packed

K+1 Cn words Strings

2-83

tpos -- dynamic QTABS starting position for a table.

index -- running stack or table pointer (declared).

curlen -- current stack/table length, in entries.

percent -- the declared percentage of the total QTABS area (dynamic
storage) to allocate to the stack or table if it overflows.

alen -- number of attribute words/entry for a table (0 implies
no attributes).

spos -- dynamic QTABS starting position for a stack.

Spi -- QSTACK relative pointer to the packed symbol representing
the i'th table entry, i.e., symbol sequence number i.

Ai -- the packed attributes, alen words long, for the i'th
table entry.

value i -- the i'th value contained in a stack.

tabnum, ssn -- the table number and symbol sequence number uniquely
identifying a symbol within an arbitrary table.

next -- the thread pointer (QTABLE relative) to the next triplet
(tabnum,ssn,next) identifying another symbol which hashes
into the same slot within the hash area. If zero, no
others remain on the thread. If an entire triplet at
position i in the hash area is zero, then no symbols
having a hash value of i have been placed in any table.

n -- the number of characters in a compressed symbol string
(8 bits).

Ci -- the i'th string character in internal form, 6 bits.
Thus, up to 63 language characters are allowed.

£ -- the number of host words required to represent a symbol
of length n,

i.e., 7+D*6
L +1qwdsZ

qwdsZ -- the host word size.

Use.: These three arrays contain all information required to maintain dynamic

symbol tables, hash tables, and stacks. Their entries are maintained by

the table (QSTACK) and stack (QSTKSR, QSTKM) manipulation support submodules.

2-84

The array QSTACK is also utilized to save array dimension descriptor

information as follows:
QTABLE

n d1 Array
d2 d3 Dimensions2 I

I .d
. n

n -- number of dimensions declared for the array.

di -- symbol pointer to a constant or variable dimension.

The array QTABS is also utilized to save equivalence groups derived from the

EQUATE function as well as successor blocks for the array QBIP (Block ID Table):

QTABS

[Above defined Table/
I Stack info]

gel ge 2
. An equivalence group

gei

0 nextpr

nextpr: geI ge 2 !An equivalence group

0 nextpr

successor blocknum Block successor word

successor successor blocknum

2-85

gei -- pointer to an equivalence group element (see EQUATE function).

nextpr -- offset to the next saved equivalence group (0 implies no more

groups).

successor -- offset to the next successor identifier word (0 implies

no more).

blocknum -- successor block number.

2-86

Statement Image - IMAGE

Format: word i: character i

character i -- the i'th character, in internal format, of the current

statement being parsed.

Use: All statement parsers and syntax support modules manipulate language char-

acters within the current statement, which is always contained within the

IMAGE buffer, one character per word, right adjusted, in internal code.

The internal codes for each meta-character are to be determined at imple-

mentation time.

Debug Control - qDEBUG

Format: word i: option i

option i -- 1 if the i'th option is selected, 0 if not.

Use: Used by the Error Report submodule to monitor the Source Processor execution

as indicated by each selection option (see Volume I, DEBUG declaration).

Mode Flags - QLMODE

Format: word i: mode i

mode i -- 1 if computational mode i is legal within expressions of

the compiler language, 0 if not.

Use: Referenced by the Expression Handler semantic support submodule for

operand/operator mode analysis.

2-87

Operator Flags - qLOPER

Format: word i: hierarchy

word i+l: commutivity

word i+2: associativity

hierarchy -- the declared or default operator hierarchy.

commutivity -- 1 if the operator is commutative, zero if not.

associativity -- 1 if the operator is associative, zero if not.

Use: Used by the Expression Handler semantic support submodule in forming a

polish string representation of a language expression.

2-88

Execution Control - QCTAB

Format:

linkll c tr chain 1 - control word

cptr iinkil ptr chain i - control word

cptr linki2
linkil priority linki2

funcnum nars.
arcon1 First Stacked Procedure

argvall Call [on chain i]
* I

argconj
argvalj

cptr klinki3
linki2 _pririty linki3

funcnum nars _
Second Stacked Procedure
Call [on chain i]

argconj
argvalj

*i

linki3

mlv-control 7 words

reoccurcontrol 10 words

cptr -- pointer to the control word for the next chain
(if zero, no more chains).

linkik -- pointer to the next deferred procedure call stacked on
a chain, starting at linkil which is specified in the
chain control word. Zero implies this is the last call
on the chain.

priority -- the priority level for the stacked call.

2-89

funcnum -- the function number of the semantic procedure being
called.

nargs -- the number of argument words following.

argconj -- argument control word for argument j (see below).

argvalj -- argument value word[s] for argument j (see below).

mlv-control -- control information saved when step downs to an mlv occur.

reoccur-control -- control information saved when a reoccurrence element
is initiated.

Use: This array is used as a dynamic control stack containing the following:

o All deferred procedure calls and their arguments;

o The control information for active step downs into mlvs and execution

of reoccurrence elements.

The deferred call information is created by the Argument Stacking submodule (QARG10)

when a deferred semantic request is made. The Deferred Execution module subsequently

performs the semantic calls still active (i.e., "true") by chain and priority within

a chain.

The control information is utilized by the Step Up/Down (QSTEP) and Reoccurrence

Maintenance (QREOCB, QREOCE) support submodules. The information (CURSOR, etc...)

is saved upon a step down into an mlv or reoccurrence, and restored upon stepping

back up, at which time the QCTAB control cells are released.

2-90

The following gives the correspondence between argument descriptions and values

as encoded within the QPARGS descriptor array and the argument descriptor and

value words placed on QCTAB by the Argument Stacking submodule (refer to QPARGS

format):

Corresponding QCTAB QCTAB Value
Argument Type Argument Descriptor Word[s]

-1 to -5 not applicable

-6 -6 n
stkvalue

l

stkvaluen

-7 -7 symbol-pointer

-9 -9 integer value

-10 -10 litptr

-11 -11 QSTART (mlvnum)

QSIZE (mlvnum)

n -- the number of stkvalue cells following.

stkvalue i -- the contents of i'th stack entry at this time for the
stack referenced by the ELEMENTS OF argument.

2-91

Condition Stack - ICOND

Format:

word i: structure-end, structure-predecessor

structure-end -- a label identifying the successor block to the

corresponding structure.

structure-predecessor -- a label identifying the predecessor block

to the corresponding structure.

2-92

Loop Control Stack - LOOPC, LOOPCI

Format: LOOPC LOOPCI

n n: m

Active ,loop-predecessor loop-induction-variable
loop < loop-successor loop-increment

(level i) loop-body 2*m /loop-induction-variable

loop-test loop-increment

Active n
loop

(level i+l) :

n -- the starting position in LOOPCI for the primary and secondary loop

induction variable information.

m -- the number of loop variables at the current level.

loop-predecessor -- block label pointer for the loop predecessor block.

loop-successor -- block label pointer for the loop successor block.

loop-body -- block label pointer for the loop body block.

loop-test -- block label pointer for the loop test code following the

loop body block (0 implies no test code).

loop-induction-variable -- a secondary or primary loop induction variable.

The first entry is the primary variable.

loop-increment -- block label pointer for the corresponding increment code

for the variable (0 implies no increment).

Use: These parallel stacks are used to save information about all currently

active program loops. An entry is made on LOOPC and LOOPCI for each

encountered LOOP call, and an entry is deleted upon executing the matching

BEND call. A loop nest of K levels results in K LOOPC and LOOPCI entries

to be made.

2-93

Block Identification Table - QBID

Format:

word i: successor-ptr, label [for block i]

successor-ptr -- offset for word in table QTABS identifying the immediate

successors to block i (see QTABS format).

label -- pointer to the label associated with the block.

Use: This array is used to identify a unique program block as well as its

associated label and all of its immediate successor blocks.

2-94

Polish Expression Stack - PSTACK

Format: operand-ptr

operator

operand-ptr

operator

operand-ptr -- the,representation of an expression operand as a symbol

pointer of the form:

symbol-type, sequence-number

symbol-type -- the type of symbolic operand, which is the

segment number to which it belongs in the

Symbol table.

'sequence-number -- the symbol sequence number within the

Symbol table segment.

operator -- a numeric representation for an expression operand.

An array, table, table item, or procedure reference has the following special

representation on PSTACK:

name-ptr [array,table,table item,or procedure pointer]

'begin-list' [a special operator defining a parameter list]

P1 [parameter list of operands or subexpressions]

'end-list' [a special operator ending a parameter list]

Use: This stack contains the reversed Polish representation of the expression

being parsed. As expression parsing proceeds, operands and operators are

continually added in the proper order until the entire expression is finally

represented.

2-95

Polish Temporary Stack - QSTACK

Format: word 1: mode 1 operator 1

word 2: mode 2 operator 2

word n: mode n

word m: operator m

mode i -- the computational mode of the i'th operand stored on PSTACK.

operator i -- the i'th stacked operator temporarily saved until placed on

PSTACK on a priority basis. A zero operator marks the start

of a subexpression.

Use: This temporary stack actually contains two information stacks at the same

time. The upper part of each word contains the saved computational modes

for operands contained on the Polish Stack (PSTACK). The lower part of

each word contains expression operators which are held temporarily because

of hierarchy considerations.

2-96

3. FUNCTION PROCESSOR

The design of the Function Processor is presented in this section. The major

modules and submodules are identified, and the supporting internal data

structures are specified.

The module is in effect a combination of a universal, language independent and

machine independent compiler with major portions of the Meta-Assembler. The

compilation algorithms are imbedded in the local and global optimizers. The code

generative functions are initiated by the PROC expander, which utilizes the code

constructor portions of the Meta-Assembler.

3-1

3.1 Program Logic Modules

The Function Processor is organized as a collection of distinct FORTRAN coded

modules performing the translation of function language into generated code.

The modules are organized into three basic groups: FL term processing, global

optimization, and code generation.

The FL term processing modules include FL term decoding and all local optimi-

zation routines. This overlay has the general function of transforming an FL

program representation into a lower level n-tuple representation on the Code

Table.

The global optimization overlay modules modify and permute the Code Table

n-tuples within loop regions to produce a more efficient program representation.

The code generation overlay modules produce the actual target code from the

Code Table n-tuple entries through PROC expansions.

Figure 3, the Function Processor block diagram, illustrates the interrelation-

ships between the major modules and the internal and external data.

3-2

MAIN CONTROL

TERM DATA I MEMORY BLOCK
ERM;:- --- DECLARATION ASSIGNMENT TRANSFORMDECOD L_-- .

LOCALGEN. EXPRESSIONS - LOCAL CODE
_ OPTIMIZATION

TERM i OVERFLOW_
INPUT CODE

CODE
TABLE-OMPILATION! 1 TABLE

BLOCK IL SUPPORT TABL--TABLE

PROGRAM
~1 DEFINITION USE/DEF

TABLE

CONTROL .~1
L TRANSFER

REGION
LOOP GLOBAL

FUNCT CONTROL OPTIMIZATION

LANGUAGE "
U SPECIAL . LOOP

UNIT 3 DIRECTIVES TABLE

-{END BLOCK BLOCK CODE . -RO D CODE
SEQUENCE GENERATION EXPAND CONSTRUCT

TWO PASS SINGLE PASS
LITERAL
, ,DUMP " INTERMEDIAT "ASSEMBLY TARGET

LANGUAGE LISTING CODE

UNIT 4 UNIT 2 UNIT 5

FIGURE 3. FUNCTION PROCESSOR BLOCK DIAGRAM

MODULE: Main Control

FUNCTION: Coordinates and controls the execution of all other logic modules

of the Function Processor.

PROCESS:

The Main Control module initiates execution of the Function Processor and

retains control at all levels. It performs the phased execution of a collection

of overlay modules. Each module has a separate function relating to one of

the following tasks: function term decoding and processing, local optimization,

global optimization, or code generation.

The Block Transfer module is called to transfer the contents of the Block ID

Table in preparation for inter-block code generation.

The Memory Assignment module is then executed to handle the assignment of

addresses to all data structures via offsets to the various types of data

control sections. The symbol table is transformed to a slightly different

format.

The Term Decode module is then repetitively executed to process each input

function term. Upon encountering the 'end' FL term, the Block Sequence

module is called to generate code for any remaining blocks still active on the

Code Table. Control is then returned to the overall compiler control (in the

main program of the Source Processor) to terminate compiler execution (single

pass mode) or to initiate the Operation Processor (two pass mode).

3-4

MODULE: Block Transform

FUNCTION: Restructure the Block ID table.

PROCESS:

The Block Transform module transforms the Block ID Table created during the
execution of the Source Processor. The connectivity matrix defining all
immediate paths between blocks is formed from the successor links formed by
the Source Processor in tables QTABS and QBID.

3-5

MODULE: Memory Assignment

FUNCTION: Assigns an offset to each program data structure relative to

the various data control sections.

PROCESS:

This module performs a scan through the Symbol Table, assigning target memory

addresses relative to data control sections to all simple variables, arrays,

tables, and table elements.

The first task performed is to assign all global data blocks. The global

block names segment of the symbol table is scanned, with the following actions:

(1) The block name link points to the first symbol. That symbol

is assigned address zero, the Item Length submodule is called

to compute the length (in target addressing units), and the

block name ISIZE attribute (the data section location counter)

is updated accordingly.

(2) The symbol link is followed and if more symbols occur, they are

assigned the current ISIZE value, and ISIZE is again updated.

At the end of the process, all global blocks will have been assigned with

their computed lengths in their ISIZE attributes. The link pointers for

each data symbol are reset to point to the data block name rather than the

next name in the data list.

The next task is that of scanning the table names segment of the Symbol Table

to resolve all TABLE declarations into equivalence chains:

(1) The table name link points to the first declared table item,

which points to next item, etc... This chain had been previously

constructed by the TABLE function of the Source Processor.

(2) For a programmer allocated table (one in which the word and bit

allocations are declared), each table item is assigned an address

field indicating the offset from the start of the table in

addressing units. These values are computed from the declared

word positions and the ratio of the target accessing and addressing

sizes.

3-6

(3) For a compiler allocated table, a scan of all table items must

be made to determine the optimal packing with target words

depending on the declared packing density of the table and each item

within. The result for each table item is a word and bit position

relative to the start of the table as in case (2). The words per

entry value is computed for the table.

(4) The result is an equivalence chain linking the table items and

table name with each item having been assigned a relative offset

to the table.

The next step is to scan the stored equivalence group data in array QTABS

corresponding to EQUATE directives. The link attribute of each symbol in each

equivalence group is used to form a circular threaded list for each item within

a group as follows:

(1) Set OFFSET=O.

(2) Set Z = OFFSET + position of the item (0 for variables, computed

for arrays from the subscripts and array declaration info).

(3) If the symbol link for the item is zero (i.e., the symbol is not

part of another group or in a global data block or is not a table

item), it is linked to the group. The symbol address field is set

to Z.

(4) If the item is in a global block:

(a) Scan all previously linked items in the group,

replacing their links with the block name pointer,

assigning them addresses within the block based on

the difference between their address field, Z, and

the assigned address of this symbol.

(b) Scan the remaining group items (in QTABS), assigning

each item an address in the data block as for case (a).

(c) Update the data block length (ISIZE) if the length of

an item causes an increase in the block size.

(d) The relocatability attribute of each item is marked as global.

3-7

(5) If the item is already in an equivalence group, the two chains

are merged:

(a) Recalculate the offsets of the chain being built

to be relative to those of the old chain:

D = Z - assigned item address

OFFSET = OFFSET - D

etc...

(b) Merge the two chains through any link. The order of the

items in the composite chain (group) is immaterial.

(6) If the item is a table item, its link attribute defines the pre-

viously constructed chain derived from a TABLE declaration. The

chain is merged into the current group as in case (5).

(7) Step (2) is repeated for the next group item. When all items have

been processed the equivalence temporary storage area in QTABP is

released.

The final task performed is that of scanning the variable and array Symbol Table

segments to assign all symbols an offset relative to the Data Control Section.

All symbols which are relative to a globally defined data block will have

already been assigned:

(1) The symbols with the largest unit size (per symbol entry) are

to be assigned first. A compiler variable had been set to the

maximum unit size encountered in the language. After assigning

all items with that unit size (steps 2-3), the next smaller

unit size is assigned, etc... The data location counter is bounded

for each unit size prior to assignment.

(2) For each symbol not having an equivalence link, the address field

is set to next value of the data location counter (L), which is

then incremented by the length of the symbol (determined by the

Item Length submodule).

3-8

(3) For an equivalenced item:

(a) The chain is scanned to find the minimum assigned

offset (=K).

(b) Each entry is assigned the address

L - K + the entry offset

The location counter L is then set to the maximum of itself

and the assigned offset plus the item length.

(c) The equivalence links are maintained for the purpose of

providing information to the Local Optimizer module.

3-9

MODULE: Data Declaration

FUNCTION: Processes a declarative FL term.

PROCESS:

For a DATA function language term, a sequence of ORG and DATAC Operation

Language PROCs are expanded by calling the PROC Expand module. The offset to

each data symbol is computed from the supplied subscript pointers (if any),

the item size, and the target accessing and addressing units.

For a assign data (ADATA) FL term, the ORG OL PROC is expanded with the label

as an argument (the label is first assigned the next Data Location Counter

value, which is then incremented by the constant or character string length).

The DATAC PROC is then expanded with the data constant (or string) as an

argument.

In either case, an ORG(O) expansion is done to restore the program location

counter.

EXPANDED OL:

DATA V[,I],O,M,C[,M,C]: ADATA label, datap:
n n

ORG (V+k) ORG (label)

DATAC (PREC,M,C) DATAC (PREC,l,datap)

ORG (0) ORG (0)

3-10

MODULE: Program Definition

FUNCTION: Processes all FL terms in the Program Definition FL category.

PROCESS:

The indicated action is performed upon encountering the following FL terms:

o MAININ name,rec,ren

ESUBIN

ISUBIN

(EENTIN

IENTIN

The PUT submodule is called directly to place the matching OL term into block 1,
the prolog block (which is active due to a preceding BEGIN 1).

o EXDUMMY i,Pi,Ri

INDUMMY

The PUT submodule is called directly to place the matching OL term into the
block 1, the prolog block.

o CLOSP name

The OL operation 'CLOSP name' is placed in the current block (PUT).

o RETURN

EXRETDUM i,p

INRETDUM i,p

MAINEX n,rec,ren

ESUBEX n,rec,ren

ISUBEX n,rec,ren

CLOSEX

The PUT submodule is called directly to place the matching OL term into the
current block.

3-11

MODULE: Compilation Support

FUNCTION: Performs support functions implied by the compilation support

category of FL terms.

PROCESS:

The indication action is performed upon encountering the following FL terms:

o STAT (statement identification)

[no action]

o LDEF label [,label] (label definition)
n

[no action]

o BEGIN label (block initiation)

The current block is terminated by entering a 'block transfer to O'
code entry on the Code Table.

The block associated with label is then activated for all subsequent code
up to the next BEGIN. The Block ID table entry for the block is modified
as follows:

(a) If the begin value is zero, it is set to the next

available code table position.

(b) If the begin value is non-zero the block is already
present on the Code Table. If the block end value points
to a 'block transfer to 0' entry, the end value is replaced
by a 'block transfer to i', where i is the current code
table length. The Set-Up module is then called to complete
the block activation.

o MODIFY name [,name]
n

The Use/Def table is used to mark the modification of the names within
the active block.

3-12

MODULE: Block Set-Up

FUNCTION: Activates a block of code on the Code Table for insertion

of additional operations.

PROCESS:

This module is called whenever new code is to be added to a previously formed

block of code on the Code Table. The Block ID Table defines the block start and

end positions. A single scan of all operators in the block is performed and the

following actions are taken:

1. The Definition Position Table is created to identify the

position of all operations defining n-tuple results which

are n-tuple pointers*.

2. The Fold Table is updated for instructions setting variables

to constants*.

* - Refer to the Local Optimizer, PUT submodule, step 3.

3-13

MODULE: Program Transfer

FUNCTION: Processes the Program Transfer of Control group of FL terms.

PROCESS:

The terms in this FL group generally cause a transfer of control to be per-

formed from the current block to other blocks. The action indicated below

takes place for each FL term:

IDXSW NAME[,-I,S,I] [,L] [,c],T
n n n

The block associated with the label attribute of NAME is assigned

the current location counter. The following OL PROCS are then expanded:

RES (NAME,O) assigns NAME the current location counter

SWENT (T,NAME) switch entry code, with possible test code

B (L) for a label argument

SWEXIT (NAME) for a null argument

BI (L) location variable, BI exists as a PROC

B (label) for CLOSE calls, other switch references

RES (label,0)

CCALL (C) close call to C

SWEXIT (NAME)

RES (label,O)

INSCALL (S,I) indexed switch call

SWEXIT (NAME)

RES (label,O)

ITSCALL (S,SIP+I-bias) item switch call

SWEXIT (NAME)

3-14

The following transfer of control FL terms are entered onto the Code Table

(via PUT) as delayed OL operations:

FL Corresponding OL

INSXFR NAME,E [Expression E-+Local Optimizer]

INSCALL (NAME,eptr*)

ITSXFR NAME,E [Expression.E+Local Optimizer]

ITSCALL (NAME,eptr)

GO L B (L) for a label

or

BI (L) for a location variable

IXFER L[,L],TEST,E [Expression E+Local Optimizer]
n IXFER L[,L],TEST,eptr

n

CXFER I[,L],TEST BI I [if no test]
n

or

CXFER I [,L]
n

* - The pointer eptr is returned by the Local Optimizer as an operand

pointer representing the expression result.

3-15

o ITMSW NAME,SIP[,K,L] [K,C] [K,-l,S,I],T
n n n

The block associated with the label attribute of NAME is assigned the

current location counter. The following OL PROCs are then expanded:

RES (NAME,)) assigns name the current location counter

CB EQ,ACC,K,L for a label argument

CB EQ,ACC,K,L,,,INDIRECT compare and branch indirect through

location variable
CB EQ,ACC,K,Iabel CLOSE, indexed or item switch call

SWEXIT (NAME)

RES (label,O) CLOSE call

CCALL (C)

SWEXIT (NAME)

RES (label,O) indexed switch call

INSCALL (S,I)

SWEXIT (NAME)

RES (label,O) item switch call

ITSCALL (S,SIP+I-bias)

SWEXIT (NAME)

3-16

MODULE: Local Optimization

FUNCTION: Incorporates an expression into the currently active block.

PROCESS:

A Polish expression stack is assumed to be the next entry in the FL input

stream. The Polish entries are scanned and resolved into binary operations

which are passed to the Binary Operator module to be placed onto the Code

Table, identified with the currently active program block. The detailed

logic is shown in Figure 3-1.

The temporary operand stack shown actually overlaps the input Polish vector

itself, starting in the leftmost position. Stacked temporary operands have

the same format as a Code Table operand (see 3.2). A result operand pointer

is returned identifying the expression result.

3-17

LOCAL OPTIMIZER

NEXT SET RESULT TO
-- POLISH NONE - LAST STACKED -- - EXIT

OPERAND ENTRY OPERAND
STACK

OPERAND
L OPERATOR

'BEGIN LIST,
... OPERATOR? /

N
'END LIST' Y ARRAY N (FUNCTION REFERENCE)
OPERATOR .----------- -REFERENCE?

Y

02=LAST STACKED OPERAND ARRAY REFERENCE PUT
SPOP OPERAND

EXPAND ARRAY PLACE FUNCTION
REFERENCE CODE N-TUPLE ON

01=LAST STACKED OPERAD - I CODE TABLE
POP OPERAND T -

SET 01 TO
ARRAY TRIPLET

BINARY OPERATOR RESULT SET 01 TOSET 01 TO
S- PROCESS BINARY FUNCTION RESULT

OPERATION J

PURGE ALL
1.IST OPERANDS

FIGURE 3-1. LOCAL OPTIMIZER LOGIC FLOW

MODULE: Array Reference

FUNCTION: Generates code for an array or table item reference.

PROCESS:

Code is generated for an array.reference from the array name and subscript
references in the temporary operand stack (see Figure 3-1). The result pointer
for the generated code along with the array base and computed constant offset
are placed onto the Code Table as a triplet entry (see 3.2, Code Table Format).

Given an array or table item reference:

A (Sl ... n), where A is dimensioned as A (d1,...,dn), the following algorithm

is applied to generate subscript code:

1. Set W = the number of addressing units per element of A;
K = 0 [the computed constant offset].

2. If all di are constants:

a. If bias 0 0 [the declared array bias value, 0 or 1],

K = -W*[(... (bias*dn-_l+bias)*dn- 3+...)*d +bias]

b. Call Binary Operator repeatedly:

S *dn
l

el+Sn-_

Ol*dn-2

61+Sn_ 2

el+S 1

If any Si is a constant, skip the above two computations
involving S. and set

K =K+Si*dl*d
2 . .*di-

3-19

3. If some or all di are variables:

Call binary operator repeatedly:

S n-bias

el*dn-1

81+S 1

1el-bias

Ol*dn_
2

01l+S 1

61-bias

4. Place a subscript triplet (A, 81, K) onto the code table.

3-20

MODULE: Binary Operator

FUNCTION: Places an optimized binary operator onto the Code Table.

PROCESS:

The combination (8P,01,e2) is examined relative to other operations encoded on
the Code Table by a succession of optimizing submodules. The resulting operand
pointer for the operation is returned as 01. Figure 3-2 gives the overall logic
flow.

Each operand has a computational mode and negation flag associated with it.
For a symbol pointer, the symbol mode is fetched from the attributes. For an
n-tuple result operand, the computational mode is set as a function of the
modes of the n-tuple operands and operator.

The Unary Analyzer is executed to examine each operand sign to determine the
result sign. The Commutative Re-orderer is called to order el and 02, and to
check for folding or operator degeneracy. The Local Strength Reducer is then
executed to check for operator strength reduction. The Redundancy Checker is
then called to check for an operator match. A 'true' exit from any of the
above calls implies a reduced operation, the result of which is set in 01.
A 'false' exit from all causes the Redundancy Checker to call the PUT module
to add the (BP,01,02) combination to the Code Table as a new binary operation.

3-21

BINARY OPERATOR

UNARY ANALYZER

PERFORM SIGN EXIT WITH
ANALYSIS "01 RESULT

FOLD
TABLE - COMMUTATIVE ORDERER T

- ORDER OPERANDS

iF

LOCAL SfRENGTH
REDUCER

CHECK FOR OPERATOR ---
CODE STRENGTH REDUCTION:

TABLE
.i•

REDUNbANCY
CHECKER T

COMBINE COMMON
SUBEXPRESSIONS

IF

PLACE OPERATION
-.-- -- (OP,01,02) ON

CODE TABLE

FIGURE 3-2. BINARY OPERATOR LOGIC FLOW

MODULE: Unary Analyzer

FUNCTION: Performs operator/operand sign analysis.

EFFECTS:

The operands of the current operator are examined for the probability of sign

cancellation and propagation to the left. The goal is to remove negation

signs from operands by flagging the result sign field, thus increasing the

chances of sign cancellation.

The following transformations are made for the indicated operations:

Result Sign

A*B + A*B

/B ------ + A/B

B - A B
'I 7

B - A B

A + B A+ B

Also, if either operand is an n-tuple result with a negation flag, and the

n-tuple operator is plus, is unreferenced [OP[R]=O], and has two operands with

differing signs, both n-tuple signs are complemented, and the operand sign is

made positive. Thus,

if t i = A + B ti = A + B

t i + c -- t i + c

If a unary operation is detected (i.e., 0 NOT 2), the result sign is set

and a true exit is made with 01=02.

3-23

MODULE: Commutative Re-orderer

FUNCTION: Places 01 and 02 in standard order and detects operator degeneracy.

PROCESS:

If the operator (OP) is commutative, its operands 61 and 62 are arranged in

canonical form:

1. If 02 is an n-tuple and 01 is not, the operands are swapped;

2. If the mode of 02 is less than the mode of 01l, the operands are swapped;

3. If 02 is a constant pointer and 01 is not, the operands are swapped;

4. Otherwise, if el < 02, swap operands.

The following degeneracy check is then made with the indicated transformation followe(

by a true exit (if found):

0 + 02----- 2 \

I * e2---- 2
S0 01 is set to this result

0 / 02 "0 prior to a true exit.
01 / e1 - 0

01 / 01 ..- 1

el ** l-----l1

The Folder module is then called to check for operations between constant operands.

3-24

MODULE: Folder

FUNCTION: Detects operations between constant operands.

PROCESS:

Information saved within the Fold Table is used to detect an operation between

two constant operands. The operands may be actual constants or variables

which have been previously set to constants. The algorithm is as follows:

1. If the operator is not computational, exit false.

2. If el is a constant, proceed to step 3. If l1 is a variable, it is

searched for in the Fold Table. If not found, exit false; if found,

replace 01 by its Fold Table entry constant pointer.

3. Perform step 2 with 02.

4. Perform the constant operation (eP) between 01 and 02, and exit true.

3-25

MODULE: Local Strength Reducer

FUNCTION: Checks the current operator for possible transformation to a more

basic operation.

PROCESS:

A check is made for exponentiation to an integer constant. If found, the

following algorithm is performed:

1. J = e2, 62= 61, Tl= el

2. N = [log 2J] [greatest integer function]

I=O0

3. Call the Redundancy Checker with

01 * 02

4. I = I+l

IF I< N, 62 = el, repeat step 3;

5. J=J-2**I

IF J <0, exit true.

6. 02=Tl, repeat step 2.

3-26

MODULE: Redundancy Checker

FUNCTION: Checks for match between the current operation and the other

n-tuples composing the current block.

PROCESS:

A forward scan of the currently active block is performed to detect a possible

match between the current (P,01,02) binary operation and a stored n-tuple.

If a match is detected, the matching n-tuple result pointer is returned to the

Binary Operator module as the operation result.

An additional task is performed involving the combination of two n-tuples with

similar operators, where the result of one is an operand of the other, and no

operands of either n-tuple are changed in the n-tuples between them. A composite

n-tuple is formed by combining the two separate ones.

The logic flow is illustrated in Figure 3-3. Heavy use is made of the 'definition

position' of each operand, defined as follows:

1. Whenever a variable is modified, generally through appearing in

the result field of an n-tuple (see PUT module), the position of

the defining n-tuple is saved in the upper part of the compressed

string pointer for the variable in the attribute table (QTABS).

2. Whenever an n-tuple is created (by PUT) with a new result field,

the DEFPOS table indexed by the result pointer is set to the

n-tuple position in the Code Table.

In checking for redundant operations, the scan time is considerably reduced

since the scan begins at the maximum definition position for 1el and 02.

3-27

REDUNDANCY
CHECKER

CODE
TABLE - - !SiETi=MAXIMUM OF THE DEFI- DEFPOS

SNITION POSITIONS OF 01 TABLEAND 02

FORWARD SCAN
END OF NO CODE TABLE, .
BLOCK? OPERATOR]IBf AT

MATCH
IOPERATION MATCH !Y

DOES 01 IS N-TUPL E RESULT
EQUAL THE N- - A VARIABLE, OR IS

ADD OP, 01, TUPLE RESULT? N-TUPLE REFERENCE
02 COMBINATION FLAG ON?
TO THE CODE N

TABLE
OPERATION IS A 01=BI-TUPLE COMMUT SCAN

BI-TUPLE WITH Y RESULT; TURN ON
MATCHING OPERANDS BI-TUPLE REFERENCE - ADD 02 AS OPERAND

EXIT 01, 02? FLAG TO N-TUPLE(EXIT . -- --

OPERAND MISMATCH,
Y OR NON-ASSOC/COMMUT j

S.\OP, OR N-TUPLE REF. 01=N-TUPLE
FLAG ON? EXIT RESULT

N

DO 01 AND 02
N MATCH ANY TWO
N-TUPLE OPERANDS? EXIT

Y

PT
PLACE OP,01,02
BI-TUPLE IN FRONT
OF N-TUPLE OPERA-

TOR

, COMMUTE SCAN
DELETE "ORRESPONDING
N-TUPLE OPERANDS '.INSERT NEW RESULT

L OPOINTER AS N-TUPLE
i OPERAND

FIGURE 3-3. REDUNDANCY CHECKER LOGIC FLOW

MODULE: Commute Scan

FUNCTION: Inserts an operand pointer in the appropriate operand position

of an n-tuple.

PROCESS:

If the n-tuple in question has a non-commutative operator, the operand argument

is inserted in the rightmost position and control is returned.

For a commutative operator, the Commutative Orderer module is repeatedly called

with paired operands as follows:

1. The current binary operands 01 and 62 are saved.

2. i=l, 01=argument operand.

3. 02= the i'th n-tuple operand.

4. The Commutative Orderer is called to arrange 81 and 02. The i'th

n-tuple operand is replaced with 01. For a True return, go to step 6.

5. A false return causes i to be incremented, and if more n-tuple

operands exist, step 3 is repeated.

6. The saved l1, 02 operands are restored.

3-29

MODULE: PUT

FUNCTION: The current operation is placed onto the Code Table.

PROCESS:

The current operation and its operand fields are placed on the Code Table in

the form of an n-tuple. The following actions are performed:

1. For a bi-tuple V=t, where V is a variable operand and t is an

n-tuple result, the n-tuple defining t (i.e., DEFPOS(t)) is checked

for a reference flag. If unreferenced, and if V is not modified

subsequent to the n-tuple, the operand V replaces the n-tuple result
field. The definition algorithm (see step 3) is then performed on V

and the n-tuple position.

2. For an operator with n operands, 1+(n+l)/2 words are utilized to

store the operator and its operands. If the Code Table overflows,

control is passed to the Code Overflow module to free table space.

The result field is set to the value of a temporary result count cell,

which is then incremented. The table entry DEFPOS (result pointer)

is set to the Code Table position of the created n-tuple. If any

of the n-tuple operands are themselves n-tuple (temporary) result

pointers, the reference flags for the defining n-tuples are set.

3. If OP is a replacement (=) operator, the following tables are updated:

a. If the n-tuple result field is a variable pointer, a scan

for the occurrence of the variable in the Fold Table is

performed. If present, and the n-tuple is not of the form
V=C, where C is a constant pointer, the Fold Table entry for V

is deleted. For the case V=C, the Fold Table entry for V is

updated or one is created for the constant C. The Use/Def

table is then updated for V.

b. The n-tuple Code Table position is marked in upper portion of

the QTABS variable compressed string pointer, thus defining

the most recent variable definition.

3-30

c. Any variable equated to V (through an EQUATE function call)

is also processed as in steps 3a, 3b.

4. If the operator is a function call, the following actions are taken:

a. If the function arguments are marked as 'output' arguments,

the actions indicated by steps 3a, 3b are performed on each

n-tuple operand corresponding to an 'output' argument.

b. A call to an external function causes all variables in global

data blocks to be processed as in steps 3a, 3b.

3-31

MODULE: Loop Control

FUNCTION: Processes the loop definition category of FL terms.

PROCESS:

The directives processed by this module define a loop region to which the Region

Global Optimizer module may be (optionally) applied. Loop parameters are encoded

in the Loop Table for each FL term as follows:

1. LOOP t,V,lb,le

A new entry is created on the Loop Table. The loop begin block (lb) and

loop end block (le) numbers are saved. The master loon variable (V) is

placed as the first primary entry. All other table entry fields are cleared.

2. PLOOP V

The parallel loop variable (V) is added as the next primary variable entry.

3. LTEST V

The active block number is saved in the Loop Table as the loop test block

number. The compare operand of the last operator, a conditional branch,

is stored in the limit field of the last (current) primary variable entry,

representing the loop variable Test value.

4. LINCR V

The active block number is saved in the Loop Table as the loop increment

block number. The last operator is examined and the operand used to

increment the loop variable in the operation is stored in the increment

field of the last (current) primary variable entry.

5. BEGIN le [where le is the block number of the loop end block for the

currently active loop]

The start of the end (successor) block to the active loop cause the

Region Global Optimizer overlay to be called under the following

conditions:

3-32

a. The loop body, loop increment, and loop test blocks are all

encoded on the Code Table; i.e., none have been dumped as yet

via the Code Generator.

b. All successors to the loop body block which are also predecessors
to the loop end block are also on the Code Table; i.e., the loop

is complete.

The loop entry is then deleted from the Loop Table.

3-33

MODULE: Region Global Optimizer

FUNCTION: Optimizes an entire loop region, consisting of a collection of

blocks on the Code Table composing the loop region.

PROCESS:

This overlay module consists of the following submodules to perform the indicated

tasks:

1. A Code Mover to remove n-tuple operations from the loop body

out of the loop.

2. A Strength Reducer to simplify additive and multiplicative opera-

tions on loop increment variables.

3. A Test Replacement checker to manipulate loop test parameters

for possible removal of loop variables entirely.

The overall logic is illustrated by Figure 3-4. After activating the loop pre-

decessor block (via Setup), a boolean vector of region, or loop, blocks to examine

is formed as follows:

1. The loop body block is included;

2. All immediate successors to this block are included (derived from
Block ID Table);

3. All their successors up to the loop successor block are included.

A single scan is then made of all blocks within the region to detect both operations

to be moved, and operations on loop variables that may be reduced. As n-tuples

are moved to the loop predecessor block (via calls to the Local Optimizer by the

Code Mover and Strength Reducer), entries are placed in the Transform Table to

cross-correlate n-tuple result pointers.

The Code Mover is applied to a given block only once, even if that block belongs to

several nested loop regions. This situation is detected by maintaining a single

boolean vector which is the logical or of all loop regions for previous calls to

the Region Global Optimizer. For the current call, block i is only examined for

strength reduction if bit i of the vector is set.

3-34

!REGION GLOBAL OPTIMIZER

BLOCK ETUP

ACTIVATE LOOP
PREDECESSOR BLOCK

FORM A REGION TO SCAN, BLOCK ID
FROM LOOP BODY BLOCK TO-- TABLELOOP SUCCESSOR

- -- - --- -

IEXA1 N NrLX NO MORE TEST REPLACEMENT EXIT
S- REGION OPERATOR CHECK FOR PRIMAR- EXIT

-VARIABLE REMOVAL I
IS N-TUPLE

NAME IN TRANSFOR4,- N-TUPLE NAME SCAN N-TUPLE NO MORE
TABLE? N OPERANDS

IVARIABLE
.. 1 HAS CODE MOVE

TRANSFORM N-TUPLE IS VARIABLE 'SET LVR ABEEN PREV MOUSLYE N /IS ICM
OPERAND TO TRANS- A LOOP VARIABLE? ---FLAG ON ~PPLIED TO THIS FLAG ON?

FORM ENTRY i BLOK?

N IS VARIABLE -- CODE MOVER
DEFINED WITH OVE N-TUPLE

REGION? MOVE N-TUPLEREGION?

SET C 1..

TRANSFORM I FLAG N IS LVR
TABLE -. -- \ FLAG ON?

.STRENGTH REDUCER

!REDUCE N-TUPLE
OPERATION

FIGURE 3-4. REGION GLOBAL OPTIMIZER LOGIC FLOW

MODULE: Code Mover

FUNCTION: Removes invariant operations from a loop region into its unique

predecessor block.

PROCESS:

This module is called by the Region Global Optimizer whenever an invariant

operation is detected. The operation is first deleted from the loop region.

Then, the Binary Operator submodule of the Local Optimizer is repeatedly called

to place the n-tuple operation into the loop predecessor block, which is now

active. The following analysis is then performed on the n-tuple result pointer

of the operation.

1. If the n-tuple result pointer is itself an n-tuple pointer, an

entry is made into the transform table with this pointer and the

returned result pointer from the call to the Binary Operator.

This will cause all references to the operation result to transformed

into a reference to the result in the predecessor block.

2. For a variable n-tuple result (i.e., a definition of a variable):

a. If the block containing the operation is the loop body block,

and there is no use of the variable anywhere in the region

(USE/DEF Table), the Binary Operator submodule is again

called with the replacement operation: V=returned result pointer.

This moves the definition itself into the predecessor block.

b. If not case a, place the operation: V=returned result in place

of the deleted operation in the current block.

3-36

MODULE: Strength Reducer

FUNCTION: Reduces an operation on a loop variable.

PROCESS:

This module is called by the Region Global Optimizer to process an operation
having a reference to a loop variable active for the current loop region. The
loop variable may be primary or secondary. The logic flow is illustrated by
Figure 3-5.

Only addition and multiplication operations between loop variables and 'region
constants' are reduced. A region constant is detected by the preceding Region
Global Optimizer operand scan such that the ICM flag (see Figure 3-4) is not
set when the Strength Reducer is called.

A delay mechanism is utilized to place a created loop variable with its initiali-
zation code into the predecessor block. This is done to detect a chain of
reducible operations, all of which may be combined into a single operation asso-
ciated with a created loop variable.

The detection of a reference to a secondary loop variable in a non-reducible

operation causes the initialization code for the variable to be inserted into
the loop predecessor block.

An entry is made into the transform table for a reduced operation to convert all
references to the operation result into the created loop variable name.

3-37

STRENGTH REDUCER

LOOP
TABLOOP IS OPERATION '+' OR SECONDARY INCREMENT PRIMARY

'*' WITH A REGION :- LOOP VARIABLE VARIABLE REFERENCE
CONSTANT? (1)? FIELD

I'
Y Y

PRIMARY LOOP VARIABLE, SET REF (1) FOR EXIT
OR REFERENCED SECONDARY THIS BLOCK;

VARIABLE? DEF (1) FOR PRE-
BINARY &PERATOR DECESSOR BLOCK

PLACE OPERATION N
IN PREDECESSOR

BLOCK BINARY bPERATOR
. BINARY OPERATOR

REPLACE 1 BY ITS PUT 1= EXIT

CREATE LOOP INITIAL VALUE INITIAL VALUE
IN PREDECESSORVARIABLE NAME POINTER; PLACE BLPREDECESSOR

(1 . ADD 1 TO OPERATION IN PRE- BLOCK
iLO P TABLEWITH OP AD DECESSOR BLOCKWITH OP AND .
RETURNED INITIAL

0c VALUE POINTERVALUE POINTER PLACE RETURNED
DE ORESULT AS NEW 1

DELETE OPERATION I INITIAL VALUE
AND DECREMENT POINTER
REFERENCE FIELD
FOR PRIMARY

VARIABLE

N-TUPLE RESULT-" PIACE N-TUPLE
,A VARIABLE (V)? N RESULT -+ 1 IN

" TRANSFORM
TABLE

PUT
V=1 IN PLACE IS OPERATOR N
;OF N-TUPLE REFERENCE FLAG " EXIT

ON?

FIGURE 3-5. STRENGTH REDUCER LOGIC FLOW

MODULE: Test Replacement

FUNCTION: Detects redundant tests and increments on primary loop variables.

PROCESS:

This module is invoked by the Region Global Optimizer as the last phase in the

analysis of a loop region. The objective is to remove any test and increment
code for loop variables which are unreferenced elsewhere in a loop region. The

tests are replaced by alternative tests on secondary variables which are additive

or multiplicative functions of the primary loop variable. The details of the

process are shown in Figure 3-6.

The Loop Table is scanned for all primary loop variables associated with the

active (last) loop. These variables include the master loop variable and all

parallel loop (PLOOP) variables. If a loop variable is unreferenced in the loop

except for its test and/or increment code, its test code is replaced by a test on
one of its secondary variables, if any are present. The 'simplest' secondary

variable is chosen is follows:

1. If any 1-region pointer is a constant pointer, choose it.

2. The next choice is any 1 with a variable 1-region pointer.

3. Choose any 1 otherwise.

If the replaced V has an increment code and is unreferenced in any loop successor

block, its increment code is deleted from the loop increment block. A check is
then made to see if the loop increment block has any computational code other than
incrementation, a condition indicating that the V-increment expression is not a
region constant since it otherwise would have been removed by the Code Mover.

If no such code is found, the region constant associated with each secondary variable
(to V) is replaced by a multiplicative or additive function on the V-increment within
the loop predecessor block.

3-39

TEST REPLACEMENT

NO MORE FETCH NEXT PRIMARY
LOOP VARIABLE. (V)

S" v :Y
SETUP DOES LOOP IN-

ACTIVATE LOOP IS V-REF COUNT / 0? CREMENT BLOCK HAVE
INCREMENT BLOCK N COMPUTATIONAL CODE?

DOES V HAVE TEST ;N
--N CODE IN THE LOOP

TEST BLOCK? BINARY OPERATOR
SCAN ALL Y

"SECONDARY LOOP N Y -DOES LOOP TEST ADD (1-OPERATOR
VARIABLES (1) MORE BLOCK HAVE ANY COM- V-INCREMENT- 1MORE CODE? REGION CONSTANT

PUTAT A CD CODE TO LOOP
IS A CIATEDPREDECESSOR FOR

IS ASSOCIATED' -EACH SECONDARY
PRIMARY VARIABLE N DOES V HAVE ANY ,VARIABLE 1
INCREMENT CODE A DEPENDENT VARIABLES . t
REGION CONSTANT? (1)? REPLACE EACH

y ' 1-REGION
BINARY OPERATOR CONSTANT FIELD.

BINARY ERATOR RADD (1-OPERATOR V-LIMIT 1-REGION BY RETURNED
ADD 1=1+1- N CONSTANT) TO LO6P PREDECESSOR BLOCK;. RESULT

I REGION CONSTANT

CHANGE TEST'CODE FOR (V,V-LIMIT)
TO (1,RETURNED RESULT)

BINARY OPERATOR INCRE-
DOES V HAVE INCRE-

GENERATE MENT CODE? N
1=1+V-INCREMENT

or Y

I=1+V-INCREMENT
*1-REGION IS V REFERENCED Y

CONSTANT IN ANY LOOP SUCCESSOR
BLOCK?
N

'DELETE INCREMENT'L
CODE FOR V

FIGURE 3-6. TEST REPLACEMENT LOGIC FLOW

The loop increment block is then activated through a call to Setup. The increment

code for each secondary variable is inserted as follows:

1. If the associated primary variable (V) increment code is a

region constant, generate

1=+1-region constant

2. Otherwise, generate

l=l+v-increment [for additive variables]

1=l+v-increment*l-region constant

3-41

MODULE: Code Overflow

FUNCTION: Creates free space on the Code Table whenever an overflow condition
occurs.

PROCESS:

This submodule is called by the PUT submodule of the Local Optimizer whenever
insufficient space remains on the Code Table to store the current n-tuple

operation. The Block Sequence overlay module is called to choose the next block[s]
on the Code Table to be dumped as generated code. The resulting released space
on the Code Table is flagged as available and control then returns to the calling
module.

3-42

MODULE: Block Sequence

FUNCTION: Determines the next program block or blocks to dump as generated code.

PROCESS:

One or more code blocks residing on the Code Table are dumped by calling the Block
Code Generation submodule. The choice of the block[s] to be output proceeds as
follows:

1. The last block to output (i) is maintained. The initial value for
i is 1 (the prolog block).

2. The next immediate successor to i, determined by the Block ID Table,
is examined. If the successor has already been dumped, another
successor to i is examined until one is found which has not yet been
dumped.

3. If the successor block is the exit (highest numbered) block, i is set
to 1, the Register Initializer is called, and step 2 is repeated. If
a complete scan is made and no successors other than the exit block are
candidates, step 8 is performed.

4. If the successor block (j) is the predecessor block for an active loop,
determined by a scan through the Loop Table, then i is set to the loop
successor block and step 2 is performed.

5. The last two operations of the successor block (j) are examined for
the following condition:

a. The last operation is a GO bk and is preceded by a
COND BRANCH ... b

b. Block bn has block bk as a successor.

The following transformation within block j is then made:

COND BRANCH ... bnl COND BRANCH ... bk

GO bk GO b
[The conditional branch operator condition is logically reversed.]

6. The Block Code Generator is then called to generate code for block j.
7. If block j ends with a GO b, then j is set to b and step 4 is performed.

Otherwise, a true exit is made.
8. Since bnly loop region blocks remain on the Code Table, the currently

active loop predecessor block becomes i and step 2 is performed. The
dumping of one or more loop blocks deactivates any loop analysis by the
Region Global Optimizer for that loop.

3-43

MODULE: Block Code Generation

FUNCTION: Generates target code for a program block and frees the corresponding

Code Table area.

PROCESS:

This module is called by the Block Sequence module to convert the encoded operations

for a program block on the Code Table into target code. A single scan of the block

is made, with code generation taking place through PROC expansions of lower-level

PROCS associated with each n-tuple pseudo-operation.

During the operator scan, operator/operand information is unpacked from the Code

Table n-tuple entry into global cells as follows:

OP -- current operation number.

RESULT -- operation result pointer.

RM -- computational mode of the result.

01 -- pointer to the first operand.

NFl -- negation flag for the first operand.

IT1 -- flag indicating the type of operand:

0 = symbol pointer.

- = n-tuple temporary result name.

2 = target register.

IMI -- computational mode of operand one.

IU1 -- the symbol type for variable (IT1=0) operands.

FB1,PREC1,... -- the unpacked symbol attribute information for variable

operands, such as number of fractional bits, precision, etc...

02,NF2,IT2... -- the same information as above for the second operand

(if present).

344

As each operand is unpacked, the target register contents (RVALUE) are scanned to

find a register containing the operand. If found, Oi is set to the register number

and ITi is set to 2.

For binary operations, the code expansion is performed on two operands at a time

as follows:

1. The first two operands are unpacked as 01 and 02 (NF1,NF2, etc...).

2. The binary operation (OP,01,02) is expanded.

3. The result register REG (if any) is associated with the operation

result pointer RESULT.

4. If more operands remain, 01 is set to RESULT, the next operand is

unpacked as 02, and step 2 is repeated.

Prior to expanding a binary operation (step 2) or a general n-tuple operation, the

operands are placed onto the PROC Control stack in preparation for a manually

initiated PROC expansion. For an operation defined by the compiler writer, the

PROC Expand module is then executed immediately. For a system-defined operation,

certain predefined steps are taken prior to initiating code expansion for certain

operators as defined below:

1. For commutative binary operators, the following transformations

are made:

01 + 02--02 - 01

01 + 02---01 - 02

01 OP Register---3Register OP 01

3-45

2. If 02 is a symbol (IT2=0) having a bit starting or ending position in

the middle of an addressing unit, then:

FCH ('A',02) [Fetch 02 into an accumulator]

REG 02,IT2=2,etc... [Replace 02 by a register]

The default code expansion for all system-defined operations are provided. All such

PROC expansions are machine independent and require user supplied PROCs only at most

basic level.

Subsequent to processing a complete operation successfully, which includes the true

exit from the highest level PROC expansion, any deferred machine code stacked onto

the tail end of QCTAB (see Code Construct module) is output via a call to the

Code Dump submodule.

3-46

MODULE: PROC Expand

FUNCTION: Enters the expansion of a PROC skeleton contained in the PROC skeleton

table (IPROC).

PROCESS:

This module performs the expansion of a PROC through interpretive execution driven

by table IPROC and the PROC control stack (QCTAB). All expansions are recursive,

allowing a PROC to call another PROC at any level, including itself.

The PROC skeletons are prepared by the Meta-Compiler and are placed on the Compiler

Library Data file during the target definition phase. The skeletons compose the

largest portion of a complete target definition data entry, which is read into

table IPROC at the start of the Function Processor execution.

The PROC control stack (QCTAB) contains all arguments to all active PROCs as well

as pointers to control nested PROC execution. The expansion of each PROC and the

manipulation of QCTAB proceeds as follows:

1. To expand PROC number 1, the current-string-ptr (CS) is set to the

PROC start location, given by the i'th position in the PROC transfer

vector preceding the PROC skeletons. If CS=O, the PROC definition is

absent and a false exit is performed (step 8).

2. The current-element-ptr (CE) is set to CS+1.

3. The PROC element pointed to by CE is processed (see below). If false,

step 7 is initiated to move to the next PROC string.

4. Advance CE to next element and repeat step 3. If no more elements,

perform a true exit (step 6).

3-47

5. Perform a true exit: the last QCTAB entry is popped, CE and CS

are reset to values at the previous level, and step 4 is repeated.

If QCTAB was empty, a true exit from PROC Expand is made.

6. False string: CS is advanced and step 2 is repeated for the next

alternative PROC string. If no alternative exists, perform a false

exit (step 8).

7. False exit: the last QCTAB entry is popped, CE and CS are reset, and

step 4 is executed. If QCTAB was empty, a false exit is made from

PROC Expand.

Processing a PROC Element:

Element Type Actions

l=Replacement Evaluate operand 2 (see below); replace

operand I variable with VALUE result.

2=Condition Test Evaluate both operands and compare with

condition operator to determine element truth.

3=NULL element No action; element is true.

4=FALSE element No action; element is false.

5=PROC call A call entry is stacked onto QCTAB. The PROC

operand pointers are copied directly. Step 1

is initiated with the called PROC number.

6=Code Request A call entry is stacked onto QCTAB as for type 5.

The Code Construct module is then called, re-

turning the element truth status.

7=Support Function Call The same actions are performed as for type 6,

except the appropriate support function is called

instead of the Code Construct module.

8=Substring Operand A dummy call entry (CS,CE, and number of args=O)

is placed on QCTAB. CS is incremented by one and

step 2 is executed.

3-48

Evaluating a PROC Operand:

A general operand pointer of the form: (operand-type, operand-value [OVAL]) is

evaluated, resulting in a returned VALUE, as follows:

Operand-Type Returned VALUE

O=variable The contents of the variable [PROC variable start

offset + OVAL] is returned.

l=integer OVAL is returned.

2=literal string OVAL is returned.

3=location counter The current location counter value + OVAL is

returned.

4=symbol pointer The contents of the variable is returned.

5=expression The expression pointed to by OVAL is evaluated

(see below).

6=PROC argument The operand pointer on QCTAB corresponding to

argument number OVAL is considered the operand

to evaluate.

7=TYPE OF operand The operand-type portion of argument OVAL is

returned.

-K=simple expression The following (secondary) operand pointer is

examined by type:

0 - return variable contents + K

3 - return entire operand pointer; K

4 - return entire operand pointer; K

6 - replace secondary operand by indicated

argument and re-examine.

Note: Only a 'simple expression' operand can be returned from the operand evaluator

as a dual result rather than a single value. This allows 'variable + offset'

or '$+offset' combinations to be identified as single operands.

3-49

Evaluation of an Expression:

Encountering an expression operand pointer causes the evaluation of the pointed

to expression, which is stored in the PROC Expressions area of IPROC. The format

of a expression is as described for table PEXP in the Meta-Translator (see section

1.2). Each operation is applied to the evaluated result of its two operands.

If two or more 'dual result' operands are present, they may only be combined in

a sensible manner, such as:

(V+10)+7

(V1+5)-(V2)

3-50

MODULEc End

FUNCTION: Terminates the Function Processor and forces the generation of all

delayed code.

PROCESS:

The Block Sequence module is repeatedly called to convert all remaining n-tuDle

operations in blocks on the Code Table into generated code. The Literal Dump

module is then called to output all referenced constants. Control is then returned

to the Main Control to terminate the execution of the Function Processor.

3-51

MODULE: Code Construct

FUNCTION: Maps a code request made within a PROC into a target instruction.

PROCESS:

A code request is processed, resulting in the stacking of intermediate language

(IL) code on the end of the PROC control stack (QCTAB). During the construction

of an IL instruction, any error condition causes a false exit to be made back to

the calling module (PROC expand).

The arguments to the code request are to be found as the latest entry on QCTAB.

The first argument defines a pointer to the operator description within the IPROC

operations section. The specified instruction format (iform) pointers define a

collection of alternate formats to which the operation can be mapped. The formats

are applied one at a time until one succeeds in constructing the operation; only

if all fail, is a false exit made.

Each iform field is matched with a code argument, and the computed or supplied value

corresponding to the argument is placed in the designated position within the

target bit string being assembled. The associated values for each code argument/iform

operand combination proceeds as follows:

IFORM OPERAND TYPE ALLOWED MATCHING CODE ARGUMENTS

Operation Code--O

The op code specified within the operation definition defines the value to be

substituted.

3-52

IFORM OPERAND TYPE ALLOWED MATCHING CODE ARGUMENTS

Register Designator-RS Variable (0), integer (1),

expression (5), PROC argument (6).

The evaluated input argument value represents a target register of class 'S'.

If the argument is not resolvable to a single absolute value, or is not of class

'S', a false condition occurs.

Control Field - F Variable (0), integer (1),

expression (5), PROC argument (6).

The evaluated input argument value is substituted as the field value. If the

argument is not resolvable to a single absolute value, a false condition occurs.

Constant

No matching code argument is fetched. The constant field within the Iform speci-

fication becomes the substituted field.

Memory Reference - M All code argument types.

A memory reference iform type consists of up to four subtypes appearing in the same

order as the corresponding code arguments. The subtypes define the memory addressing

mode, optional index register, optional base register, and optional indirect flag.

Each subtype corresponds to a code argument as follows:

MEMORY REFERENCE SUBTYPE ALLOWED MATCHING CODE ARGUMENT

1. Location Counter - L Any type.
Signed Displacement - SD

Unsigned Displacement - D

Any of the above three addressing mode specifiers typically require a matching

memory reference argument (see below).

3-53

MEMORY REFERENCE SUBTYPE ALLOWED MATCHING CODE ARGUMENT

2. Index Register - X Variable (0), integer (1),
expression (5), PROC argument (6).

The argument must be resolvable to a single value corresponding to a register

of type 'X', i.e., an index register.

3. Base Register - B Variable (0), integer (1),

expression (5), PROC argument (6).

The argument must be resolvable to a single value corresponding to a register

of type 'B', i.e., a base register.

4. Indirect Address - * Variable (0), integer (1),

PROC argument (6).

The argument is single valued and represents an indirect addressing flag.

The above subtypes may be specified in the following combinations with the

indicated meaning.

3-54

(1) L[,X][,*] Direct memory reference with possible indexing and indirect
addressing.

The computed effective address is assumed to be a memory reference plus the

contents of register X (if present). If an indirect flag is present, the indirectness

is assumed to be applied after computing L+(X), i.e., (L+(X)) is the effective

memory address.

(2) [S]D[,X][,*] Location counter displaced with possible indexing and
indirect addressing.

The value [S]D is computed as a [signed] displacement from the current value of

the location counter by subtraction from the memory reference location. Any

indirectness is assumed to be performed last, i.e., ([S]D+current location counter

+ (X)) is the effective memory address.

(3) [S]D,B[,X][,*] Base register, displaced with optional indexing and
indirect.

If the code argument corresponding to [S]D is a [signed] resolvable value, it is

directly substituted as:are all remaining arguments. The supplied base B is assumed

to be the selected base.

If the argument for [S]D is not resolvable, it defines a memory reference requiring

automatic displacement from a base register. One base is selected from the 'B'

class having a current assigned address within range of the displacement field width.

If none are found, a base is automatically loaded with a program or data base location

counter value within range of the memory operand.

3-55

The successful completion of the application of an iform to a code request results

in a series of TXT code records formatted as IL object text. The IL is stored

onto the control table (QCTAB), to be subsequently otuput as code by the Code

Dump module upon a true exit from the highest level PROC.

3-56

MODULE: Register Manipulation

FUNCTION: Maintains the status of all target registers.

PROCESS:

This module consists of a collection of submodules for fetching, saving, and

defining the contents of all target registers. Each register is identified

explicitly by number or by association with one of 26 possible register classes.

Each register is described by 6 flag words defining all aspects of the current

status of the register. The register class and flag data is maintained in contiguous

areas of the IPROC table.

The enclosed submodules are accessible to code generation process through support

function calls invoked within PROCs. Each submodule has a particular register

maintenance function as follows:

SVR(R) - Saving a Register

1. Register R is saved in a temporary storage variable if it is currently

associated with an n-tuple name referenced in a future n-tuple operator.

All such future references are replaced by the temp-name pointer.

2. Register R is freed and made available (FRG(R)).

3. If R is found to be a continuation of a lower numbered register

(i.e., RVALUE (R)=l, the lower numbered register (up through R)

is saved and freed.

3-57

FRG(R) - Freeing a Register

1. Frees the register R and marks it as being available. [I.e.,

RVALUE(R),...,RVALUE(R+WSIZE(R)-1)=O;WSIZE(R),...,WSIZE(R+WSIZE(R)-l)=0]

DFR(R,S,M,V) - Defining a Register

1. Defines the register R as containing the operand V, with size S.

[I.e., RSIZE(R)=S;RVALUE(R)=V;RVALUE(RH),..,RVALUE(R+S-1)=1]

2. The mode of the register is set to M. [RMODE(I),...,RMODE(R+S-l)+M].

RSR(V) - Search Registers

1. Searches the target registers for the operand V.

2. Returns 0 if not found, or the register number if found.

IRG - Initialize Registers

1. Initializes all modifiable (i.e., RHOLD(R)=O) registers. [I.e., clears

RVALUE, WSIZE cells]

GTR('T',SIZE) - Get a Register

1. Gets SIZE registers of type T (A,B,X,G, or other) from the register pool.

2. May call SVR to save and free registers if SIZE consecutive registers

are not free (RVALUE=0O).

3. Gets only non-hold registers (RHOLD=O).

4. Returns the value of the found register. Clears RVALUE(R) and sets

WSIZE(R)=SIZE.

5. If SIZE consecutive registers are not free, then all registers con-

taining variables are freed, and a second try is made before SVR is called.

GTS(M,PREC) - Get Temporary Storage Name

1. Creates a temporary storage cell in the symbol table of mode M and

precision PREC.

3-58

FCH('T',A) - Fetch into a Register

1. Fetches the operand A and places it in a register. If A is a symbol,

a register is fetched from the register pool and A is loaded into it.

The sought after register is selected according to type 'T'. If A

is a register not of type 'T', it is transferred to one of type 'T'.

2. The current accumulator cell REG is set to the register.

3. The register mode and size are determined by A.

4. If a specific register R is requested, it is force-loaded with A.

SETREG(R,SIZE,MODE) - Set Register Contents

1. Set current accumulator REG to R.

2. Set RMODE(R)=MODE, WSIZE(R)=SIZE.

3. The value of the current accumulator REG will be set to contain the

current N-tuple upon completion of the processing of the current N-tuple.

3-59

MODULE: Code Dump

FUNCTION: Outputs intermediate language or target language along with an assembly

listing.

PROCESS:

This module is called by PROC Expand upon a true exit from the highest level PROC.

Any delayed code remaining on the control stack (QCTAB) is output and assembly

listing lines are generated for each.

If a single pass compilation has been selected, the intermediate language (IL)

stacked on QCTAB is sent directly to the text output file (unit 5) as Target

Language, i.e., object text. Any references to future symbols in the IL are replaced

by reference threads, to be followed by definition threads at the time each future

symbol is defined (refer to Volume I, section 3, Target Language). If an assembly

listing has been requested, a listing line is generated and passed to the print

file (unit 2).

For a two pass compilation the stacked IL is passed to the Intermediate File

(unit 4). Assembly listing lines, if requested, will be generated by the

Operation Processor.

3-60

3.2 Internal Data Structures

Several control arrays are present within the Function Processor to drive the

optimizers and code generative routines. The format and use of each array is

described below in symbolic format.

Loop Table - LOOP

Format:

word i*4: value-ptr-i, Ip

lb It

ii le

value-ptr-i: ref-count,limit
Primary Variable

increment, V

region-constant,op Secondary Variable

assoc-ptr,l

value-ptr-i -- pointer to the loop variables and their values for the

active loop at level i.

lp -- loop predecessor block number.

lb -- loop body block number.

It -- loop test block number (O=no test code).

li -- loop increment block number (O=no test code).

le -- loop successor block number.

ref-count -- number of references to this primary loop variable within

the loop.

limit -- primary variable limit code result pointer.

increment -- primary variable increment code result pointer.

V -- primary variable pointer.

region-constant -- secondary variable initial value result pointer.

op -- secondary variable operation type (additive or multiplicative

function of associated V).

assoc-ptr -- value-ptr-i pointer for the primary variable associated with

the secondary variable.

1 -- secondary variable pointer.

3-61

Use:

The relevant information for all active loops is stored in this table dynamically
by the FL term loop processors and the Region Global Optimizer modules.

Loop variables are of two types: primary and secondary. Primary loop variables
include the master variable defined in the LOOP FL term and all parallel loop
variables defined in subsequent PLOOP FL terms. Secondary loop variables are
created by the Strength Reducer submodule and are associated with a corresponding
primary loop variable.

3-62

Use/Definition Table - USE/DEF

Format:

Use Def

/word i*n: uil dil

For +1 ui2 di2
variable . .

i

+n-l: Uin din

n -- the number of host words required to hold a boolean description

vector for a block, computed as

m-1

qwdsz + 1, where m = the total number of program blocks;

qwdsz = the host word size in bits.

u -- the boolean use vector.

d -- the boolean definition vector.

Use:

This table defines all definitions and uses of variables within program
blocks. A variable is defined (or used) in block j if bit j of the
boolean vector d (or u) is set.

3-63

Definition Position Table - DEFPOS

Format:

word i: codeposition

codeposition -- Code Table position pointer.

Use:

For a given block, the i'th word in table DEFPOS gives the position

of the n-tuple operator with the result operand i. The table is

cleared at the start of each code block.

3-64

Fold Table - QFOLD

Format:

word i: varptr, conptr

varptr -- pointer to a variable.

conptr -- pointer to a constant.

Use:

QFOLD contains a list of all variables having a constant value

in the currently active block. It is cleared whenever a new

block is initiated. Entries are deleted or entered by the PUT

module upon processing a replacement operator.

3-65

Block Identification Table - QBID

Format:

word i*(n+2): label,addr

begin,end Block i
connectivity1 information

connectivityn

begin -- block start position in Code Table

(0 implies the code for the block is not yet

in the Code Table).

end -- block end position in the Code Table.

label -- pointer to the label associated with the block.

connectivity -- the connectivity vector for block i.

Block j is an immediate successor to block i if the j'th bit

of connectivity is a one.

K+QWDSZ-1n -- QWDSZ , where K = the total number of program blocks,

QWDSZ = the host word size in bits.

addr -- the address of the generated code for the program block

(0 implies not yet generated)

Use:

BID defines all relevant information concerning the basic blocks of
the program being compiled. The position of a block in the Code Table
as well as all flow dependency relationships between blocks can be
determined from the encoded information.

3-66

Code Table

Format:

n-tuple

n-tuple

n-tuple -- r, op, result, n

nfl, 01, nf2, 02

: n/2 words

nfn-1 O n-l' nfn' On

r -- reference flag on if this n-tuple result is currently referenced

as an operand to a future n-tuple.

op -- the n-tuple operator number.

n -- the number of n-tuple operands.

nfi -- the negation flag for operand i.

0i -- the i'th operand pointer.

r -- the result operand pointer.

An operand pointer has the form:

or O,tabnum,symbol-sequence-number. [symbol pointer operand]
l,mode,quad [quadruple result operand]

tabnum -- symbol table segment number.

symbol-sequence-number -- symbol position.

mode -- computational mode of the quadruple result.
quad -- quadruple result number.

Use:

3-67

PROC Skeleton Table - IPROC

This table contains the expansions for all system and compiler-writer-defined

PROCs. Its structure is identical to that of record two of a Compiler Library

Data file entry (see section 5.1).

3-68

PROC Control Stack - QCTAB

Format:

word 1: current-string-pointer

current-element-pointer

argl Level 1
arg2 PROC, Code,

or Support call
argn

n

word n+3: current-string-pointer \

', Level 2

current-string-pointer -- the saved string position in table IPROC.

current-element-pointer -- the saved string element position in table IPROC.

n -- number of argument words.

argi -- the operand pointer to the i'th argument. The operand pointer

format is discussed in the PROC Expand module.

Use:

This control stack supports the nested expansion of all PROCs by the

PROC Expand module.

3-69

4. OPERATION PROCESSOR PASS II

This section presents the design of the Operation Processor Pass II module.

This modul'e is responsible for the conversion of Intermediate Language object

text into Target Language.

This module is invoked only if a two pass compilation has been requested, in which

case the Intermediate Language file is created by the Function Processor as

preliminary object text.

4-1

4.1 Program Logic Modules

The major modules and submodules of the Operation Processor Pass II are des-

cribed below.

Figure 4 presents a block diagram of the module logic.

4-2

MAIN
CONTROL

CODE
FORMAT

INTERMEDIATE ASSEMBLY TARGET
LANGUAGE LISTING LANGUAGE

UNIT 4 UNIT 2 UNIT 5

FIGURE 4 - OPERATION PROCESSOR PASS II BLOCK DIAGRAM

MODULE: Main Control

FUNCTION: Controls overall module execution.

PROCESS:

The Intermediate Language file (unit 4) is rewound and control is passed to the

Code Format module to transform IL entries into Target Language.

4-4

MODULE: Code Format

FUNCTION: Transforms IL entries into Target Language.

PROCESS:

The module description and global symbol dictionary IL text is copied directly

to the Target Language file (unit 5) since no modification is required.

The object text (TXT) records following contain the actual target instructions

requiring possible modification. Each TXT item containing a symbolic reference

to a program symbol is replaced by the relocatable or absolute address of the item

as defined in the Symbol Table segment associated with the symbol. The modified

object text is then passed on to the Target Language file as completed object.

If an assembly listing has been requested, a listing line is formatted and sent to

the print file (unit 2). The operation mnemonic, assembled instruction value,

operand name, etc... are derived from the IL text item.

The END IL item terminates execution and completes the compilation process.

4-5

4.2 Internal Data Structures

The only internal tables and arrays utilized are the IPROC array, containing

the target description, and the various Symbol Table segments (tables OTABP, QTABS).

The format and content of each are described in section 3.2.

4-6

5. EXTERNAL DATA STRUCTURES

The format of each data set file utilized by the C.W.S. system is described in this

section. Each file corresponds to an intermediate language or library driving

the execution of a processor. The formal definition of the structure of the

corresponding language is described in section 1.

5-1

5.1 Function Language File Structure

The Function Language file contains a sequence of records, each describing a

function term, with the following format:

nwords

verb

Record argl A function term

1 *

argi

Record
2

nwords -- the number of words in the record.

verb -- the function verb number.

argk -- the argument words.

5-2

5.2 Intermediate Language File Structure

The IL file represents an intermediate form of the Target Language. The format

of the file contents are identical to that of the Target Language file described

in the next section (5.3).

5-3

5.3 Target Language File Structure

Target code, or object text, is encoded on this file as a sequence of records,

each record occupying 512* or less words:

Record Format

n

textl

textn-l

n -- record word size (less or equal to 512*).

texti -- object text information as described in section 3, Volume I,

Target Language.

The records are constructed so that the last text word ends an object text item

description, i.e., no item description starts in one record and ends within another.

* - This record size is system-dependent.

5-4

5.4 Compiler Library File Structure

This file consists all target definition data as well as compiler initialization

information.

A compiler initialization entry consists of a single record formatted as follows:

cid
qtabp-size

QTABP

qtabs-size

QTABS

__.qtable-size

QTABLE

cid -- compiler name in packed integer format (3 words).

qtabp-size -- the number of words for the following QTABP array (1 word).

QTABP -- the contents of array QTABP (qtabp-size words).

qtabs-size -- the number of words for the following QTABS array (1 word).

QTABS -- the contents of array QTABS (qtabs-size words).

qtable-size -- the number of words for the following QTABLE array (1 word).

QTABLE -- the contents of array OTABLE (qtable-size words).

5-5

A target definition entry consists of two successive records formatted as follows:

tid

total-words

num-regs

iform-start

iproc-start

Record pexp-start

pvars-start

cstrings-start

parameters

register
classes

register
flags

operations

Record __iforms

2 proc transfer vect

proc skeletons

proc expressions

proc variables

compressed strings

tid -- target identification name in packed integer format (3 words).

total-words -- total number of words in the entire target definition entry

(both records).

num-regs -- the number of declared target registers.

iform-start -- starting word position of the instruction format descriptors.

iproc-start -- starting word position of the PROC skeletons.

pexp-start -- starting word position of the PROC expression operands.

pvars-start -- starting word position for the PROC variable storage area.

cstrings-start -- starting word position of the compressed string PROC operands.

5-6

parameters -- the target definition parameters (word size, addressing unit,

etc...).

register classes -- the definition of all registers belonging to the 26 possible

register classes (26 words).

register flags -- the status information for all target registers

(num-regs *6 words).

operations -- the encoded target machine operations.

iforms -- the encoded instruction formats.

proc transfer vect -- the word starting positions for the definitions of each

PROC.

proc skeletons -- the encoded PROCS definitions.

proc expressions -- the encoded PROC expression operands.

proc variables -- the storage area for PROC variables.

compressed strings -- the storage area for all packed integer strings repre-

senting literal PROC operands, operation names, etc...

he structure of each encoded data area is defined in Volume II, section 1.2, the

escription of the internal data structures maintained by the Meta-Translator.

5-7

APPENDIX A: SYMBOL TABLE LAYOUT

The following describes the default attributes for the Symbol Table, which

consists of eight segments. Each segment resides in a separate hash table

and corresponds to a particular symbol type. The attributes are referred to

by name, each name corresponding to a globally defined cell from which the

attribute is packed or unpacked. The name descriptions are collectively

defined at the end of the Appendix.

A.1 Segment 1 - Simple Variables

Attributes: IMODE,IFRAC,IRND,ISIGN,IRNGE,IRELOC,IPREC,IPKD,

ISMODE,IBIT,ILINK

A.2 Segment 2 - Arrays

Attributes: IMODE,IFRAC,IRND,ISIGN,IRNGE,IRELOC,IPREC,IPKD,

ISMODE,IBIT,ILINK,IDIM

A.3 Segment 3 - Tables

Attributes: IPAR,IRELOC,IRIG,INUMEN, IWDSEN,IPKD,ILINK

A.4 Segment 4 - Procedures

Attributes: IMODE,IRELOC,IREC,IREEN,IPTYPE,IPREC,ILINK,IBLOCK

A.5 Segment 5 - Global Block Names

Attributes: ISIZE,ILINK

A-1

A.6 Segment 6 - Switch Names

Attributes: ISIP,IBLOCK

A.7 Segment 7 - Labels

Attributes: IBLOCK, ILINK

A.8 Segment 8 - Constants

Attributes: IMODE,IEXP,IPREC

A-2

Attribute Name Definitions:

IMODE -- the computational mode of the item:

integer

fixed point

real (floating point)

complex

logical (masking)

boolean

texual

contexual (currently active mode is ISMODE)

status

location (contains an address)

binary (secondary mode only - see ISMODE)

octal (secondary mode only)

hex (secondary mode only)

IFRAC -- the signed fractional bit position for fixed point items.

IRND -- the rounding flag (O=no, l=yes)

ISIGN-- the signed flag (O=unsigned, l=signed item)

IRNGE-- the range flag (O=no range check, l=range check)

IRELOC-- the item relocatability:

program relative (within the data section)

global block relative

absolute

externally defined

entry point

input dummy (subprogram parameter)

output dummy (subprogram parameter)

A-3

IPREC -- the precision of the item. Specifies the number of target bits to

allocate for the item. For texual items, IPREC specifies the number

of bytes to allocate.

IPKD -- the item packing density (for table items only):

none

medium

dense

tight

ISMODE -- the secondary mode of the item. For texual and contexual items,

ISMODE defines the current computational mode (contexual) or

conversion mode (texual) for the item.

IBIT -- the starting bit position of a table item within a host word.

ILINK -- the item link word to other symbols having a common property. The

link is a symbol pointer containing both a type (table segment number)

and a position. The meaning of ILINK for each symbol type is as follows:

(a) Simple Variables, Arrays, or Table Names

1. If within a global block, points to the next symbol

within the block, or the block name if no more.

2. If equated to other symbols, points to the next symbol

in the equivalence group.

3. If a table item, points to the table name.

4. If an argument to a procedure, points to the next procedure

argument, or to the procedure name if no more.

(b) Procedure Names

Points to the first procedure argument.

(c) Global Block Names

Points to the first symbol in the block.

(d) Labels

Points to the next label (if any) which is also identified with the
same block (IBLOCK) as this label.

A-4

IDIM -- the pointer to the dimension vector in QTABLE for an array item.

IPAR -- the parallel (=1) or serial (=0) flag for a table name.

IRIG -- the table rigidity flag for a table name (0=rigid).

INUMEN -- the number of table entries for a table name.

IWDSEN -- the number of words per entry for a table name.

IREC -- the recursive flag (O=no, 1=yes) for a procedure name.

IREEN -- the reentrant flag (O=no, l=yes) for a procedure name.

IPTYPE -- the procedure type for a procedure name:

0 = main program

1 = subroutine

2 = function

3 = closed subroutine

4 = entry point

IBLOCK -- the pointer to a label associated with a program block (for pro-

cedures, switch names). For labels, contains the block number

associated with the label.

ISIZE -- the computed size of a global data block.

ISIP -- the switch item name pointer for item switches.

IEXP -- signed binary exponent for constants. Indicates the IFRAC value for

fixed point constants.

A-5

